Calculate an OxCGRT index or indices
Usage
calculate_index(df, codes, tolerance)
calculate_gov_response(df)
calculate_containment_health(df)
calculate_stringency(df)
calculate_economic_support(df)
calculate_indices(df)
Arguments
- df
A data.frame produced by a call to
calculate_subindices()
.- codes
A vector of policy type codes to use for the index calculation.
- tolerance
An integer specifying the number of missing values above which index will not be calculated and reported.
Value
A numeric value for mean subindex scores of specified policy types.
For calculate_indices()
, a tibble calculated OxCGRT indices
Author
Ernest Guevarra based on calculation methods by Hale, Thomas, Noam Angrist, Emily Cameron-Blake, Laura Hallas, Beatriz Kira, Saptarshi Majumdar, Anna Petherick, Toby Phillips, Helen Tatlow, Samuel Webster (2020). Oxford COVID-19 Government Response Tracker, Blavatnik School of Government.
Examples
## Get policy actions data for Afghanistan on 1 September 2020
x <- get_data(json = get_json_actions(ccode = "AFG",
from = NULL,
to = "2020-09-01"))
## Calculate OxCGRT subindices
y <- calculate_subindices(df = x$policyActions)
## Calculate OxCGRT index
calculate_index(df = y,
codes = c(paste("C", 1:8, sep = ""),
paste("E", 1:2, sep = ""),
paste("H", 1:3, sep = ""), "H6"),
tolerance = 1)
#> [1] 33.33333
## Calculate OxCGRT government response index
calculate_gov_response(df = y)
#> [1] 35.41667
## Calculate OxCGRT containment and health index
calculate_containment_health(df = y)
#> [1] 40.47619
## Calculate OxCGRT stringency index
calculate_stringency(df = y)
#> [1] 28.7037
## Calculate OxCGRT economic support index
calculate_economic_support(df = y)
#> [1] 0
## Calculate all OxCGRT indices
calculate_indices(df = y)
#> # A tibble: 4 × 2
#> index values
#> <chr> <dbl>
#> 1 Government Response Index 35.4
#> 2 Containment and Health Index 40.5
#> 3 Stringency Index 28.7
#> 4 Economic Support Index 0