
Statistical methods for assessing agreement
between two methods of clinical

measurement
Solutions

Ernest Guevarra

02 December 2024

Contents

1 Introduction to the exercise 2

2 Task 1: Read the dataset 3
2.1 Downloading files from the internet . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Reading text data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Reading text data after downloading . . . . . . . . . . . . . . . . . . . 4
2.2.2 Reading text data without downloading . . . . . . . . . . . . . . . . . 5
2.2.3 Function to download and then read the dataset . . . . . . . . . . . . 6
2.2.4 Function to conditionally download dataset and then read the dataset 7
2.2.5 Function to conditionally download dataset and then read the dataset

- overwrite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Task 2: Calculate the metrics needed for a Bland and Altman plot 13
3.1 Function to calculate Bland and Altman metrics - vectorised approach . . . . 14
3.2 Function to calculate Bland and Altman metrics - data.frame approach . . . 15
3.3 Function to calculate Bland and Altman metrics - combined approach . . . . 17
3.4 Function to calculate Bland and Altman metrics - modular approach . . . . . 19
3.5 Function to calculate Bland and Altman metrics - universal approach . . . . 21

4 Task 3: Create a Bland and Altman plot 25
4.1 Key Features of the Bland-Altman Plot . . . . . . . . . . . . . . . . . . . . . 25

4.1.1 Axes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1.2 Data Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1.3 Central Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1.4 Limits of Agreement (LoA) . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1



4.3 Creating a Bland and Altman plot . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3.1 Basic Bland and Altman plot . . . . . . . . . . . . . . . . . . . . . . . 26
4.3.2 Bland and Altman plot with labels . . . . . . . . . . . . . . . . . . . . 27
4.3.3 Bland and Altman plot with colours and additional styling . . . . . . 30

4.4 Some guidance on plotting functions . . . . . . . . . . . . . . . . . . . . . . . 32

List of Figures

1 Bland and Altman plot - basic . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2 Bland and Altman plot with customised labels . . . . . . . . . . . . . . . . . 29
3 Bland and Altman plot with customised points styles and colours . . . . . . . 32

List of Tables

This document provides detailed solutions to the tasks set in the Statistical methods for
assessing agreement between two methods of clinical measurement exercise set
of the Open and Reproducible Science in R module of the MSc in International
Health and Tropical Medicine.

1 Introduction to the exercise

The following tasks have been setup to help students get familiar with functional program-
ming in R.

The students are expected to go through the tasks and appropriately write R code/script to
fulfill the tasks and/or to answer the question/s being asked within the tasks. R code/script
should be written inside a single R file named ba.R and saved in the project’s root direc-
tory.

This exercise is based on:

Bland, J. M. & Altman, DouglasG. Statistical Methods For Assessing Agreement
Between Two Methods Of Clinical Measurement. Lancet 327, 307–310 (1986).

The dataset used in the paper can be accessed from the teaching_datasets repository.
The URL to the .dat file is https://raw.githubusercontent.com/OxfordIHTM/teaching_
datasets/main/ba.dat.

The ba.dat dataset contains peak expiratory flow rate (PEFR) measurements (in litres per
minute) taken with a Wright peak flow metre (Wright variable) and a Mini-Wright peak
flow metre (Mini variable). This is the same data that is presented in the referenced Lancet
article above.

2

https://oxford-ihtm.io/teaching/
https://www.tropicalmedicine.ox.ac.uk/study-with-us/msc-ihtm
https://www.tropicalmedicine.ox.ac.uk/study-with-us/msc-ihtm
https://raw.githubusercontent.com/OxfordIHTM/teaching_datasets/main/ba.dat
https://raw.githubusercontent.com/OxfordIHTM/teaching_datasets/main/ba.dat


2 Task 1: Read the dataset

This task is asking for the learner to create a function that would do the following:

1. Download the ba.dat file from the provided download link/URL; and,

2. Read that data into R.

To create this function, we can use already existing functions that does each step separately.
For downloading files from the internet, there is a function called download.file(). For
reading a text dataset, we can look at the read.table() family of functions.

2.1 Downloading files from the internet

The download.file() is the most straightforward function available in base R for down-
loading files from the internet. The basic syntax for the function is shown below:

download.file(
url = "https://raw.githubusercontent.com/OxfordIHTM/teaching_datasets/main/ba.dat", 1

destfile = "data/ba.dat" 2

)

1 Provide the download link/URL for your file. For this task, it would be https:
//raw.githubusercontent.com/OxfordIHTM/teaching_datasets/main/ba.dat. Note
that download link/URL should be enclosed in quotes.

2 Provide the file path to where the file should be downloaded. The instructions specifically
said that this should be downloaded into the data directory of the project and for the
name, we just use the same name of the data file.

The arguments url and destfile are the minimum required arguments to specify. When
you run this line of code, you should expect the ba.dat file to be downloaded into the data
directory. You can check this by issuing the following command on the R console:

list.files("data")

[1] "ba.dat"

which shows that a file called ba.dat can be found inside the data directory of this project.

3

https://raw.githubusercontent.com/OxfordIHTM/teaching_datasets/main/ba.dat
https://raw.githubusercontent.com/OxfordIHTM/teaching_datasets/main/ba.dat


2.2 Reading text data

2.2.1 Reading text data after downloading

The read.table() function can be used to read the ba.dat file. After the data has been
downloaded, it should be available in the data directory of our project. With this, we can
use the read.table() function as follows:

read.table(
file = "data/ba.dat", 1

header = TRUE, 2

sep = " " 3

)

1 Specify the file path to the dataset. In our case, the dataset has been downloaded into
the data directory so the relative file path to the data is data/ba.dat.

2 Specify whether the dataset being read has variable names or column names in the first
row. In our case, the ba.dat dataset has variable names included (as described in the
instructions). So, we specify header = TRUE.

3 Specify the value separators used in the dataset being read. The ba.dat dataset uses
whitespace (" ") to separate values. So we specifcy sep = " ".

When we run this line of code, we get:

Wright Mini
1 494 512
2 395 430
3 516 520
4 434 428
5 476 500
6 557 600
7 413 364
8 442 380
9 650 658
10 433 445
11 417 432
12 656 626
13 267 260
14 478 477
15 178 259
16 423 350
17 427 451

We get a data.frame with 17 rows and 2 columns of data.

4



2.2.2 Reading text data without downloading

The read.table() family of functions allow for reading of text data direct from a down-
load link/URL without having to download the data first. The file argument in the
read.table() family of functions accepts URL of a text data file. The function then reads
the data directly from that URL. This functionality is useful for when downloading of data
is not needed or if there are rules with regard to downloading and/or keeping of the required
dataset. However, it should be noted that reproducibility using a link to read data directly
into R depends on whether the URL link is a permanent link that will not change over
time.

To read the ba.dat dataset directly into R without downloading first, we use the following
code:

read.table(
file = "https://raw.githubusercontent.com/OxfordIHTM/teaching_datasets/main/ba.dat",
header = TRUE,
sep = " "

)

which gives:

Wright Mini
1 494 512
2 395 430
3 516 520
4 434 428
5 476 500
6 557 600
7 413 364
8 442 380
9 650 658
10 433 445
11 417 432
12 656 626
13 267 260
14 478 477
15 178 259
16 423 350
17 427 451

This is the same output as the earlier approach.

5



2.2.3 Function to download and then read the dataset

Now that we know how to use the download.file() and the read.table() functions, we
can now use them into creating a function that downloads the data and then reads it. A
basic implementation of this function will look like this:

read_ba_data <- function(url, destfile) { 1

download.file(url = url, destfile = destfile) 2

read.table(file = destfile, header = TRUE, sep = " ") 3

}

1 We set a function name of read_ba_data() and use arguments for url and destfile
which are the two required arguments for download.file(). The destfile argument
will then be used as the specification for the file argument for the path to the file to
read in the read.table() function.

2 Use the url and destfile argument specification to supply corresponding input values
to the download.file() function.

3 Use the destfile argument specification to supply input value to the read.table()
function. Specifications for header and sep arguments are hardcoded as it assumes
that the ba.dat file has a header and uses " " as value separator.

We can then try this function to see if it gives us the expected outputs.

read_ba_data(
url = "https://raw.githubusercontent.com/OxfordIHTM/teaching_datasets/main/ba.dat",
destfile = "data/ba.dat"

)

which produces the following result:

Wright Mini
1 494 512
2 395 430
3 516 520
4 434 428
5 476 500
6 557 600
7 413 364
8 442 380
9 650 658
10 433 445
11 417 432
12 656 626
13 267 260
14 478 477
15 178 259

6



16 423 350
17 427 451

The same output is produced as earlier when the dataset was read into R. To check that
the download component worked, we check if the ba.dat dataset is in the data directory
of the project.

list.files("data")

[1] "ba.dat"

The ba.dat file is in the data directory. The read_ba_data() function works as expected.

2.2.4 Function to conditionally download dataset and then read the dataset

The read_ba_data() function is working the way we expect and need it to.

However, we can still consider adding some other features/functionalities that can make the
function work more efficiently. For example, depending on our context and our requirements,
we might want to just read the ba.dat dataset directly from the URL without downloading
it. So, we probably would like to give the user of our function the ability to decide whether
the file should be downloaded and then read or should just be read into R directly. For,
this, we can refactor the earlier function as follows:

read_ba_data <- function(url,
download = TRUE, 1

destfile) {
## If download = TRUE, download dataset
if (download) { 2

download.file(url = url, destfile = destfile)
} else {
## If download = FALSE, set destfile as url link

destfile <- url 3

}

## Read dataset
read.table(file = destfile, header = TRUE, sep = " ")

}

1 Use an argument called download which takes in logical values (TRUE or FALSE). If
TRUE, then the function should download the dataset in the specified destfile. If
FALSE, then the dataset is read directly from the url.

2 Create a conditional if() statement based on whether download argument is TRUE
or FALSE. If TRUE, then the function should download the dataset in the specified
destfile.

7



3 If the download conditions is FALSE, then the destfile argument is specified with the
url value so that the dataset is read directly from the url.

To test that this updated read_ba_data() function works as expected, we first remove the
ba.dat file that we have already downloaded earlier by using the following commands in
the R console:

file.remove("data/ba.dat")

[1] TRUE

Then, we check whether it has indeed been removed:

file.exists("data/ba.dat")

[1] FALSE

The ba.dat file doesn’t exist in the data directory.

We then test the updated read_ba_data() function first with download = FALSE as fol-
lows:

read_ba_data(
url = "https://raw.githubusercontent.com/OxfordIHTM/teaching_datasets/main/ba.dat",
download = FALSE 1

)

1 Set download = FALSE so that ba.dat is read directly into R without downloading.
Since no download of data will be performed, there is no need to specify the destfile
argument.

This code outputs the following:

Wright Mini
1 494 512
2 395 430
3 516 520
4 434 428
5 476 500
6 557 600
7 413 364
8 442 380
9 650 658
10 433 445
11 417 432
12 656 626

8



13 267 260
14 478 477
15 178 259
16 423 350
17 427 451

which is the same output as the earlier function.

We then test whether or not the ba.dat file is present in the data directory. Our expectation
is that the ba.dat file is not to be found there. We test as follows:

file.exists("data/ba.dat")

[1] FALSE

The ba.dat file is not found in the data directory. The updated read_ba_data() function
works as expected.

2.2.5 Function to conditionally download dataset and then read the dataset - overwrite

The updated read_ba_data() function is working the way we expect and need it to.

However, we can still consider adding some conditionalities that can make the function work
more efficiently. For example, once we have used the current read_ba_data() function with
download = TRUE specification, the ba.dat file should already be in our data directory.
Since this dataset is not expected to change anymore1, we might want to update the current
read_ba_data() function such that it will not overwrite an existing download of ba.dat if
download = TRUE. This is useful as we don’t have to repeat a download operation if the file is
already present in our data directory. To implement this functionality, the read_ba_data()
function can be updated as follows:

read_ba_data <- function(url,
download = TRUE,
destfile,
overwrite = FALSE) { 1

## If download = TRUE, download dataset
if (download) {

## If overwrite = TRUE, download dataset
if (overwrite) { 2

download.file(url = url, destfile = destfile)
} else {
## If overwrite = FALSE, check if destfile exists before downloading

if (!file.exists(destfile)) { 3

1This dataset is a teaching dataset and is provided by Bland and Altman in their paper. It is very reasonable
to expect that no changes will happen to this dataset in the future.

9



download.file(url = url, destfile = destfile)
}

}
} else {
## If download = FALSE, set destfile as url link

destfile <- url
}

## Read dataset
read.table(file = destfile, header = TRUE, sep = " ")

}

1 Use overwrite argument that takes on logical (TRUE or FALSE) value so that user
can specify whether they want the function to overwrite an existing file specified by
destfile.

2 If download = TRUE and overwrite = TRUE, download of the dataset is performed re-
gardless of whether it is already present.

3 If download = TRUE and overwrite = FALSE (default), a check is performed whether
the file path specified in destfile exists. If it doesn’t exist, then download of the
dataset is performed. If the file exists, then dataset is not downloaded.

We can now test whether the function works as expected. From the earlier example, we
have the previous download of the ba.dat file and then ran the previous function with
download = FALSE. So, no ba.dat file is currently found in the data directory. To test
whether overwrite = FALSE works, we use the updated function as follows

read_ba_data(
url = "https://raw.githubusercontent.com/OxfordIHTM/teaching_datasets/main/ba.dat",
download = TRUE, 1

destfile = "data/ba.dat",
overwrite = FALSE

)

and then we get:

Wright Mini
1 494 512
2 395 430
3 516 520
4 434 428
5 476 500
6 557 600
7 413 364
8 442 380
9 650 658
10 433 445

10



11 417 432
12 656 626
13 267 260
14 478 477
15 178 259
16 423 350
17 427 451

We get the data read into R and then we expect that the download process happened
because download = TRUE even though overwrite = FALSE because the ba.dat file is not
present in data directory. We check this by

file.exists("data/ba.dat")

[1] TRUE

The ba.dat file was found in the data directory of the project.

Now that the ba.dat file is back in the data directory, we can test the overwrite = FALSE
argument again. We expect that the read_ba_data() will not re-download the ba.dat
dataset. Instead, it will just read what is already available in the data directory.

read_ba_data(
url = "https://raw.githubusercontent.com/OxfordIHTM/teaching_datasets/main/ba.dat",
download = TRUE, 1

destfile = "data/ba.dat",
overwrite = FALSE

)

We get the data read into R and during the running of the code, we notice that no console
message relating to download were showing with the whole process taking relatively quicker
than earlier.

Wright Mini
1 494 512
2 395 430
3 516 520
4 434 428
5 476 500
6 557 600
7 413 364
8 442 380
9 650 658
10 433 445
11 417 432
12 656 626

11



13 267 260
14 478 477
15 178 259
16 423 350
17 427 451

Then we can test the overwrite = TRUE argument. We expect that the read_ba_data()
will download the ba.dat dataset regardless of whether the ba.dat is found in the data
directory.

read_ba_data(
url = "https://raw.githubusercontent.com/OxfordIHTM/teaching_datasets/main/ba.dat",
download = TRUE, 1

destfile = "data/ba.dat",
overwrite = TRUE

)

Wright Mini
1 494 512
2 395 430
3 516 520
4 434 428
5 476 500
6 557 600
7 413 364
8 442 380
9 650 658
10 433 445
11 417 432
12 656 626
13 267 260
14 478 477
15 178 259
16 423 350
17 427 451

We get the data read into R and during the running of the code, we notice that on the console
we see messages relating to the download process were showing (see Console output 1) with
the whole process taking relatively longer than earlier.

The updated read_ba_data() function is working as expected. We use it to create a data
object called ba_data.

ba_data <- read_ba_data(
url = "https://raw.githubusercontent.com/OxfordIHTM/teaching_datasets/main/ba.dat",
destfile = "data/ba.dat"

)

12



trying URL 'https://raw.githubusercontent.com/OxfordIHTM/teaching_datasets/main/ba.dat'
Content type 'text/plain; charset=utf-8' length 166 bytes
==================================================
downloaded 166 bytes

Console output 1: Showing downloading process ongoing

which results in:

ba_data

Wright Mini
1 494 512
2 395 430
3 516 520
4 434 428
5 476 500
6 557 600
7 413 364
8 442 380
9 650 658
10 433 445
11 417 432
12 656 626
13 267 260
14 478 477
15 178 259
16 423 350
17 427 451

3 Task 2: Calculate the metrics needed for a Bland and Altman
plot

The different metrics used to construct a Bland and Altman plot are:

• Mean of the per subject measurements made by the Wright and the Mini-Wright;

• Difference between the per subject measurements made by the Wright and the Mini-
Wright;

• Mean of the difference between the per subject measurements made by the Wright
and the Mini-Wright; and,

• Lower and upper limits of agreement between the per subject measurements made by
the Wright and the Mini-Wright.

13



We can approach this task in five different ways.

3.1 Function to calculate Bland and Altman metrics - vectorised approach

The vectorised approach calculates each metric as vectors2 and then concatenates them into
a list3. The following function shows this approach:

calculate_ba_metrics <- function(ba_data) { 1

## Get per row mean of measurements
mean_values <- (ba_data$Wright + ba_data$Mini) / 2 2

## Get per row difference of measurements
differences <- ba_data$Wright - ba_data$Mini 3

## Mean of the differences of measurements
mean_differences <- mean(differences) 4

## Upper and lower limits of agreement
upper_limit <- mean_differences + 1.96 * sd(differences) 5

lower_limit <- mean_differences - 1.96 * sd(differences)

## Concatenate metrics into a named list
list( 6

mean_values = mean_values,
differences = differences,
mean_differences = mean_differences,
upper_limit = upper_limit,
lower_limit = lower_limit

)
}

1 Name the function calculate_ba_metrics() and use an argument ba_data which is
the data.frame of the dataset we downloaded and read in the first task.

2 Calculate the per row mean of the two measurements and assign it to the mean_values
object.

3 Calculate the per row difference between the two measurements and assign it to the
differences object.

4 Calculate the mean of the per row differences and assign it to the mean differences
object.

5 Calculate the upper and lower limits of agreement and assign them to the upper_limit
and lower_limit objects respectively.

6 Concatenate all the calculated values into a named list.
2A vector is essentially a collection of elements of the same data type, arranged in a one-dimensional array.
3A list is a data structure that can store elements of different types. Unlike vectors, which are homogenous

(all elements must be of the same type), lists are heterogeneous and can hold elements such as numbers,
strings, vectors, other lists, and even functions.

14



We use this function as follows:

calculate_ba_metrics(ba_data)

which gives the following output:

$mean_values
[1] 503.0 412.5 518.0 431.0 488.0 578.5 388.5 411.0 654.0 439.0 424.5 641.0
[13] 263.5 477.5 218.5 386.5 439.0

$differences
[1] -18 -35 -4 6 -24 -43 49 62 -8 -12 -15 30 7 1 -81 73 -24

$mean_differences
[1] -2.117647

$upper_limit
[1] 73.86201

$lower_limit
[1] -78.0973

We see the named list structure of the output with the mean_values and the differences
being vectors whilst the rest of the metrics are single values.

3.2 Function to calculate Bland and Altman metrics - data.frame approach

The data.frame approach outputs each metric as vectors and concatenates them into the
input dataset. The function using this approach can look like this:

calculate_ba_metrics <- function(ba_data) {
## Get per row mean of measurements and add to ba_data
ba_data$mean_values <- (ba_data$Wright + ba_data$Mini) / 2 1

## Get per row difference of measurements and add to ba_data
ba_data$differences <- ba_data$Wright - ba_data$Mini 2

## Mean of the differences of measurements
ba_data$mean_differences <- mean(ba_data$differences) 3

## Upper and lower limits of agreement
ba_data$upper_limit <- ba_data$mean_differences + 1.96 * 4

sd(ba_data$differences)
ba_data$lower_limit <- ba_data$mean_differences - 1.96 *

sd(ba_data$differences)

15



## Return ba_data
ba_data

}

1 The per row mean of measurements are calculated and added as a new column in the
input dataset.

2 The per row difference in measurements are calculated and added as a new column in
the input dataset.

3 The mean of the difference in measurements is calculated and added as a new column
in the input dataset. Because this value is a single value, it is repeated per row of the
input data.

4 The upper and lower limits of agreement in measurements are calculated and are each
added as new columns in the input dataset. Because these values correspond to single
values, they are repeated per row of the input data.

We use this function as follows:

calculate_ba_metrics(ba_data)

which gives the following output:

Wright Mini mean_values differences mean_differences upper_limit lower_limit
1 494 512 503.0 -18 -2.117647 73.86201 -78.0973
2 395 430 412.5 -35 -2.117647 73.86201 -78.0973
3 516 520 518.0 -4 -2.117647 73.86201 -78.0973
4 434 428 431.0 6 -2.117647 73.86201 -78.0973
5 476 500 488.0 -24 -2.117647 73.86201 -78.0973
6 557 600 578.5 -43 -2.117647 73.86201 -78.0973
7 413 364 388.5 49 -2.117647 73.86201 -78.0973
8 442 380 411.0 62 -2.117647 73.86201 -78.0973
9 650 658 654.0 -8 -2.117647 73.86201 -78.0973
10 433 445 439.0 -12 -2.117647 73.86201 -78.0973
11 417 432 424.5 -15 -2.117647 73.86201 -78.0973
12 656 626 641.0 30 -2.117647 73.86201 -78.0973
13 267 260 263.5 7 -2.117647 73.86201 -78.0973
14 478 477 477.5 1 -2.117647 73.86201 -78.0973
15 178 259 218.5 -81 -2.117647 73.86201 -78.0973
16 423 350 386.5 73 -2.117647 73.86201 -78.0973
17 427 451 439.0 -24 -2.117647 73.86201 -78.0973

We see the data.frame structure of the output with new columns/variables for each of the
calculated metric and the repeated per row values for the mean_differences, upper_limit,
and lower_limit.

16



3.3 Function to calculate Bland and Altman metrics - combined approach

The structure of the output (either list or data.frame) each has their pros and cons. A
list structure is relatively more flexible and can be transformed in many ways whilst the
data.frame structure is ideal for use in functions that require a data.frame input (i.e.,
ggplot2 for plotting). With this in mind, a combined approach that gives users an option
between a vectorised or a data.frame approach can be useful and have a broader and more
generalised usage.

This function can be implemented as follows:

calculate_ba_metrics <- function(ba_data, type = c("list", "df")) { 1

type <- match.arg(type) 2

mean_values <- (ba_data$Wright + ba_data$Mini) / 2 3

differences <- ba_data$Wright - ba_data$Mini
mean_differences <- mean(differences)
upper_limit <- mean_differences + 1.96 * sd(differences)
lower_limit <- mean_differences - 1.96 * sd(differences)

if (type == "list") { 4

list(
mean_values = mean_values,
differences = differences,
mean_differences = mean_differences,
upper_limit = upper_limit,
lower_limit = lower_limit

)
} else {

data.frame(
ba_data, mean_values, differences, mean_differences,
upper_limit, lower_limit

)
}

}

1 Use an argument called type which can be specified as either list or df (short for
data.frame).

2 The function match.arg() matches the input value for type to the choices allowed and
checks whether it is specified correctly. If type not specified, match.arg() uses the
first value (list) as the default.

3 Calculate each of the metrics like before.
4 Based on what type is, the metrics are concatenated into a list or into a data.frame.

We use this function as follows to output a list:

calculate_ba_metrics(ba_data)

17



which gives the following output:

$mean_values
[1] 503.0 412.5 518.0 431.0 488.0 578.5 388.5 411.0 654.0 439.0 424.5 641.0
[13] 263.5 477.5 218.5 386.5 439.0

$differences
[1] -18 -35 -4 6 -24 -43 49 62 -8 -12 -15 30 7 1 -81 73 -24

$mean_differences
[1] -2.117647

$upper_limit
[1] 73.86201

$lower_limit
[1] -78.0973

We use this function as follows to output a data.frame:

calculate_ba_metrics(ba_data, type = "df")

which gives the following output:

Wright Mini mean_values differences mean_differences upper_limit lower_limit
1 494 512 503.0 -18 -2.117647 73.86201 -78.0973
2 395 430 412.5 -35 -2.117647 73.86201 -78.0973
3 516 520 518.0 -4 -2.117647 73.86201 -78.0973
4 434 428 431.0 6 -2.117647 73.86201 -78.0973
5 476 500 488.0 -24 -2.117647 73.86201 -78.0973
6 557 600 578.5 -43 -2.117647 73.86201 -78.0973
7 413 364 388.5 49 -2.117647 73.86201 -78.0973
8 442 380 411.0 62 -2.117647 73.86201 -78.0973
9 650 658 654.0 -8 -2.117647 73.86201 -78.0973
10 433 445 439.0 -12 -2.117647 73.86201 -78.0973
11 417 432 424.5 -15 -2.117647 73.86201 -78.0973
12 656 626 641.0 30 -2.117647 73.86201 -78.0973
13 267 260 263.5 7 -2.117647 73.86201 -78.0973
14 478 477 477.5 1 -2.117647 73.86201 -78.0973
15 178 259 218.5 -81 -2.117647 73.86201 -78.0973
16 423 350 386.5 73 -2.117647 73.86201 -78.0973
17 427 451 439.0 -24 -2.117647 73.86201 -78.0973

18



3.4 Function to calculate Bland and Altman metrics - modular approach

The modular approach creates multiple functions that calculates each component metric of
the Bland and Altman plot and then assembles them into one overall function. Function 1,
Function 2, Function 3, Function 4 each calculate one of the metrics needed for the Bland
and Altman plot.

calculate_mean_values <- function(ba_data) {
(ba_data$Wright + ba_data$Mini) / 2

}

Function 1: Calculate per row mean of measurements

calculate_diff_values <- function(ba_data) {
ba_data$Wright - ba_data$Mini

}

Function 2: Calculate per row difference of measurements

calculate_mean_diff <- function(ba_data) {
mean(calculate_diff_values(ba_data))

}

Function 3: Calculate the mean of differences of the measurements

Each of these functions require the same arguments: m1 which is a vector of numeric values
for the first measurement and m2 which is a vector of numeric values for the second mea-
surement. Function 1 and Function 2 are very simple functions performing basic row-wise
vectorised operations. Function 3 and Function 4 use the first 2 functions to perform the
calculations.

Then, using all these four functions, Function 5 calculates all the Bland and Altman metrics
and provides the option for the user to output a list or a data.frame.

We can apply this overall function as follows:

calculate_ba_metrics(ba_data)

which gives the following output

$mean_values
[1] 503.0 412.5 518.0 431.0 488.0 578.5 388.5 411.0 654.0 439.0 424.5 641.0
[13] 263.5 477.5 218.5 386.5 439.0

$differences
[1] -18 -35 -4 6 -24 -43 49 62 -8 -12 -15 30 7 1 -81 73 -24

19



calculate_diff_limits <- function(ba_data) {
differences <- calculate_diff_values(ba_data)
mean_differences <- calculate_mean_diff(ba_data)

upper_limit <- mean_differences + 1.96 * sd(differences)
lower_limit <- mean_differences - 1.96 * sd(differences)

c(upper_limit, lower_limit)
}

Function 4: Calculate the upper and lower limits of agreement

$mean_differences
[1] -2.117647

$upper_limit
[1] 73.86201

$lower_limit
[1] -78.0973

To output a data.frame, we use the function as follows:

calculate_ba_metrics(ba_data, type = "df")

which gives the following output

Wright Mini mean_values differences mean_differences upper_limit lower_limit
1 494 512 503.0 -18 -2.117647 73.86201 -78.0973
2 395 430 412.5 -35 -2.117647 73.86201 -78.0973
3 516 520 518.0 -4 -2.117647 73.86201 -78.0973
4 434 428 431.0 6 -2.117647 73.86201 -78.0973
5 476 500 488.0 -24 -2.117647 73.86201 -78.0973
6 557 600 578.5 -43 -2.117647 73.86201 -78.0973
7 413 364 388.5 49 -2.117647 73.86201 -78.0973
8 442 380 411.0 62 -2.117647 73.86201 -78.0973
9 650 658 654.0 -8 -2.117647 73.86201 -78.0973
10 433 445 439.0 -12 -2.117647 73.86201 -78.0973
11 417 432 424.5 -15 -2.117647 73.86201 -78.0973
12 656 626 641.0 30 -2.117647 73.86201 -78.0973
13 267 260 263.5 7 -2.117647 73.86201 -78.0973
14 478 477 477.5 1 -2.117647 73.86201 -78.0973
15 178 259 218.5 -81 -2.117647 73.86201 -78.0973
16 423 350 386.5 73 -2.117647 73.86201 -78.0973
17 427 451 439.0 -24 -2.117647 73.86201 -78.0973

20



calculate_ba_metrics <- function(ba_data, type = c("list", "df")) {
type <- match.arg(type)

mean_values <- calculate_mean_values(ba_data)
differences <- calculate_diff_values(ba_data)
mean_differences <- calculate_mean_diff(ba_data)
limits <- calculate_diff_limits(ba_data)

if (type == "list") {
list(
mean_values = mean_values,
differences = differences,
mean_differences = mean_differences,
upper_limit = limits[1],
lower_limit = limits[2]

)
} else {

data.frame(
ba_data, mean_values, differences, mean_differences,
upper_limit = limits[1], lower_limit = limits[2]

)
}

}

Function 5: Calculate all the Bland and Altman metrics

3.5 Function to calculate Bland and Altman metrics - universal approach

All the above approaches for creating a function to calculate Bland and Altman metrics
have been designed specific for the ba.dat dataset. What this means is that the functions
work appropriately but only for a dataset that has variables called “Wright” and “Mini”.
Hence, these functions will be useful for this specific exercise only. Once you have a dataset
with two values of measurements similar to the ba.dat dataset which, in theory, can be
analysed using the Bland and Altman method, these functions cannot be used for that
dataset.

It would be ideal that we try to make this function as universally applicable as possible
such that it can be used with any dataset that has data to which the Bland and Altman
method can be applied to. This will make the function usable beyond just this exercise.

It is relatively easy to improve our current function to make it universal. Instead of making
the function require a specific data.frame input as its main argument, we can instead make
the function require vectors of values for the first and second measurements instead as its
arguments. This is demonstrated by the functions below.

Function 6, Function 7, Function 8, Function 9 are variations of the earlier per metric

21



calculate_mean_values <- function(m1, m2) {
(m1 + m2) / 2

}

Function 6: Calculate per row mean of measurements

calculate_diff_values <- function(m1, m2) {
m1 - m2

}

Function 7: Calculate per row difference of measurements

functions. Instead of a data.frame as the required input, we use two arguments m1 and
m2 for vectors of values for the first and second measurements respectively. This is a very
minor adjustment but it makes a big difference in making the functions more universal. By
doing this, we let the user decide the kind of input to provide to the function based on their
data.

Now, for the final overall function shown below, we set an argument for a data.frame input
that contains measurements values that can be analysed using the Bland and Altman ap-
proach and then a further two arguments for the names of the variables for the first and
second measurements that are being assessed.

calculate_ba_metrics <- function(df, 1

m1, m2, 2

type = c("list", "df")) {
type <- match.arg(type)

m1 <- df[ , m1]
m2 <- df[ , m2]

mean_values <- calculate_mean_values(m1 = m1, m2 = m2)
differences <- calculate_diff_values(m1 = m1, m2 = m2)
mean_differences <- calculate_mean_diff(m1 = m1, m2 = m2)
limits <- calculate_diff_limits(m1 = m1, m2 = m2)

if (type == "list") {
list(
mean_values = mean_values,
differences = differences,
mean_differences = mean_differences,
upper_limit = limits[1],
lower_limit = limits[2]

)
} else {

data.frame(

22



calculate_mean_diff <- function(m1, m2) {
mean(calculate_diff_values(m1 = m1, m2 = m2))

}

Function 8: Calculate the mean of differences of the measurements

calculate_diff_limits <- function(m1, m2) {
differences <- calculate_diff_values(m1 = m1, m2 = m2)
mean_differences <- calculate_mean_diff(m1 = m1, m2 = m2)

upper_limit <- mean_differences + 1.96 * sd(differences)
lower_limit <- mean_differences - 1.96 * sd(differences)

c(upper_limit, lower_limit)
}

Function 9: Calculate the upper and lower limits of agreement

df, mean_values, differences, mean_differences,
upper_limit = limits[1], lower_limit = limits[2]

)
}

}

1 A data.frame object containing measurement values that can be analysed using the Bland
and Altman approach.

2 Two additional arguments for character values of the names of the variables in the
data.frame input for the values for the first and second measurements respectively.

The overall function can be used as follows:

calculate_ba_metrics(df = ba_data, m1 = "Wright", m2 = "Mini")

which gives the following list output

$mean_values
[1] 503.0 412.5 518.0 431.0 488.0 578.5 388.5 411.0 654.0 439.0 424.5 641.0
[13] 263.5 477.5 218.5 386.5 439.0

$differences
[1] -18 -35 -4 6 -24 -43 49 62 -8 -12 -15 30 7 1 -81 73 -24

$mean_differences
[1] -2.117647

$upper_limit

23



[1] 73.86201

$lower_limit
[1] -78.0973

or

calculate_ba_metrics(df = ba_data, m1 = "Wright", m2 = "Mini", type = "df")

which gives the following data.frame output

Wright Mini mean_values differences mean_differences upper_limit lower_limit
1 494 512 503.0 -18 -2.117647 73.86201 -78.0973
2 395 430 412.5 -35 -2.117647 73.86201 -78.0973
3 516 520 518.0 -4 -2.117647 73.86201 -78.0973
4 434 428 431.0 6 -2.117647 73.86201 -78.0973
5 476 500 488.0 -24 -2.117647 73.86201 -78.0973
6 557 600 578.5 -43 -2.117647 73.86201 -78.0973
7 413 364 388.5 49 -2.117647 73.86201 -78.0973
8 442 380 411.0 62 -2.117647 73.86201 -78.0973
9 650 658 654.0 -8 -2.117647 73.86201 -78.0973
10 433 445 439.0 -12 -2.117647 73.86201 -78.0973
11 417 432 424.5 -15 -2.117647 73.86201 -78.0973
12 656 626 641.0 30 -2.117647 73.86201 -78.0973
13 267 260 263.5 7 -2.117647 73.86201 -78.0973
14 478 477 477.5 1 -2.117647 73.86201 -78.0973
15 178 259 218.5 -81 -2.117647 73.86201 -78.0973
16 423 350 386.5 73 -2.117647 73.86201 -78.0973
17 427 451 439.0 -24 -2.117647 73.86201 -78.0973

We now have a function that we can use for any data that can be analysed using the Bland
and Altman method/approach.

We should now create an object called ba_metrics to store the output of this function for
use in the next step (plotting).

ba_metrics <- calculate_ba_metrics(df = ba_data, m1 = "Wright", m2 = "Mini")

which gives us

ba_metrics

$mean_values
[1] 503.0 412.5 518.0 431.0 488.0 578.5 388.5 411.0 654.0 439.0 424.5 641.0
[13] 263.5 477.5 218.5 386.5 439.0

24



$differences
[1] -18 -35 -4 6 -24 -43 49 62 -8 -12 -15 30 7 1 -81 73 -24

$mean_differences
[1] -2.117647

$upper_limit
[1] 73.86201

$lower_limit
[1] -78.0973

4 Task 3: Create a Bland and Altman plot

The Bland and Altman method lends itself for useful graphical representation of outputs.
This is why the Bland and Altman plot is commonly used to identify this analytical ap-
proach.

The Bland and Altman plot, also known as a Tukey mean-difference plot, is a graphical
method used to compare two different measurement techniques or instruments by analyzing
the agreement between them. It is commonly used in clinical research and other scientific
disciplines where comparing two methods is essential.

4.1 Key Features of the Bland-Altman Plot

4.1.1 Axes

• The x-axis represents the mean of the two measurements for each observation.

• The y-axis represents the difference between the two measurements for each observa-
tion.

4.1.2 Data Points

Each point on the plot corresponds to one observation, showing the relationship between
the average measurement and the difference between the two methods.

4.1.3 Central Line

A horizontal line at the mean difference (bias) indicates the average level of disagreement
between the two methods.

25



4.1.4 Limits of Agreement (LoA)

Two horizontal lines represent the limits within which most differences between the two
methods will fall.

These limits approximate a 95% confidence interval for the differences.

4.2 Interpretation

• If the differences cluster around zero and within the limits of agreement, the two
methods are considered to agree well.

• Systematic bias is indicated by a consistent deviation from zero.

• A pattern in the differences (e.g., increasing or decreasing differences) might suggest
proportional bias or other issues with one or both methods.

4.3 Creating a Bland and Altman plot

4.3.1 Basic Bland and Altman plot

The following code creates a basic Bland and Altman plot:

plot_ba <- function(ba_metrics) { 1

plot(x = ba_metrics$mean_values, y = ba_metrics$differences) 2

abline(h = ba_metrics$mean_differences) 3

abline(h = ba_metrics$upper_limit)
abline(h = ba_metrics$lower_limit)

}

1 Use ba_metrics output from previous function calculating Bland and Altman metrics.
2 Create a scatter plot using the base plot() function in R with the per row mean of

measurements in the x-axis and the per row differences of measurements in the y-axis.
3 Create horizontal lines for the mean differences (bias), upper, and lower limits of agree-

ment of the plot.

We use this function as follows:

plot_ba(ba_metrics)

which produces the following plot (Figure 1):

In this output plot, we see that no title is given to the plot. The x- and y-axis labels defaults
to the input values for the x and y arguments in the plot() function. The horizontal lines
for the bias and limits of agreement are solid.

26



300 400 500 600

−
50

0
50

ba_metrics$mean_values

ba
_m

et
ric

s$
di

ffe
re

nc
es

Figure 1: Bland and Altman plot - basic

4.3.2 Bland and Altman plot with labels

We can improve the basic plot by adding relevant labels. These are:

• A title for the plot;

• Axis labels for x- and y-axis; and,

• Additional styling and labels for the bias line and the limits of agreement lines.

The following function shows how this can be done:

plot_ba <- function(ba_metrics,
title = "Bland and Altman plot", 1

xlab = NULL, ylab = NULL, 2

limits_lab = TRUE) { 3

plot(
x = ba_metrics$mean_values,
y = ba_metrics$differences,
main = title, 4

xlab = xlab, ylab = ylab 5

)

abline(h = ba_metrics$mean_differences, lty = 2, lwd = 0.7) 6

abline(h = ba_metrics$upper_limit, lty = 2, lwd = 0.7)
abline(h = ba_metrics$lower_limit, lty = 2, lwd = 0.7)

27



if (limits_lab) { 7

## Label for mean differences line
text( 8

x = max(ba_metrics$mean_values), y = ba_metrics$mean_differences,
labels = paste0(
"Mean difference: ", round(ba_metrics$mean_differences, digits = 1)

),
pos = 2, cex = 0.70

)

## Label for upper limit of agreement
text(
x = max(ba_metrics$mean_values), y = ba_metrics$upper_limit,
labels = paste0(
"Upper limit: ", round(ba_metrics$upper_limit, digits = 1)

),
pos = 2, cex = 0.70

)

## Label for lower limit of agreement
text(
x = max(ba_metrics$mean_values), y = ba_metrics$lower_limit,
labels = paste0(
"Lower limit: ", round(ba_metrics$lower_limit, digits = 1)

),
pos = 2, cex = 0.70

)
}

}

1 Use an argument title for the title of the plot. A default title is given which will be
used if the user doesn’t supply a title value.

2 Use xlab and ylab arguments for the x- and y-axis labels respectively. This is set to
NULL by default. If user doesn’t supply values for these arguments, the function will
use the default labels used in the plot() function.

3 Use limits_lab argument which takes a logical (TRUE or FALSE) input. If TRUE
(default), then labels for the bias, upper, and lower limits of agreement will be added
to the plot. If FALSE, no labels will be added.

4 The value supplied to the title argument is used in the main argument of the plot()
function.

5 The values supplied to xlab and ylab arguments are used in the xlab and ylab argu-
ments of the plot() function.

6 The lines for the bias and the limits of agreement are stylised into dashed lines by setting
the lty argument of the abline() function to 2 which will use a dashed line. The
lines are also made a little bit thinner by specifying a value of 0.7 to the lwd argument

28



of the abline() function. This style is used to the lines so that when the labels are
added onto the lines, the label will be more visible and the lines blend more to the
background.

7 Create a condition using the if function that will check whether the limits_lab is
TRUE or FALSE which will create the labels for the lines if TRUE.

8 If limits_lab is TRUE, then the bias and limits of agreement lines are created using
the text() function. The labels are positioned to the left (pos = 2) of the maximum
value of the mean values of the measurements (x) and at the values of the bias, upper,
and lower limits of agreement (y respectively). The label for the text identifies what
the line represents and the value it represents. The text is given a character expansion
(cex) of 0.7 .

We can use this function as follows:

plot_ba(
ba_metrics,
title = "Wright vs Mini-Wright",
xlab = "Mean PEFR (per subject)",
ylab = "Difference in PEFR (per subject)"

)

which outputs this plot (see Figure 2):

300 400 500 600

−
50

0
50

Wright vs Mini−Wright

Mean PEFR (per subject)

D
iff

er
en

ce
 in

 P
E

F
R

 (
pe

r 
su

bj
ec

t)

Mean difference: −2.1

Upper limit: 73.9

Lower limit: −78.1

Figure 2: Bland and Altman plot with customised labels

The output plot has a customised title, the x- and y-axis have appropriate and informative
labels, the bias line and the limit of agreement lines are styled appropriately and labeled
more informatively.

29



4.3.3 Bland and Altman plot with colours and additional styling

We can further improve on the labeled version of the plot added styling and colour to the
points of the scatter plot.

The points of the scatter plot use default points style of a hollow point in black outline. We
can add styling and colour with this version of the function:

plot_ba <- function(ba_metrics,
title = "Bland and Altman plot",
xlab = NULL, ylab = NULL, limits_lab = TRUE,
pch = NULL, col = NULL, bg = NULL, cex = NULL) { 1

plot(
x = ba_metrics$mean_values,
y = ba_metrics$differences,
main = title,
xlab = xlab, ylab = ylab,
pch = pch, 2

col = ifelse(is.null(col), "black", col), 3

bg = bg, 4

cex = cex 5

)

abline(h = ba_metrics$mean_differences, lty = 2, lwd = 0.7)
abline(h = ba_metrics$upper_limit, lty = 2, lwd = 0.7)
abline(h = ba_metrics$lower_limit, lty = 2, lwd = 0.7)

if (limits_lab) {
## Label for mean differences line
text(
x = max(ba_metrics$mean_values), y = ba_metrics$mean_differences,
labels = paste0(
"Mean difference: ", round(ba_metrics$mean_differences, digits = 1)

),
pos = 2, cex = 0.70

)

## Label for upper limit of agreement
text(
x = max(ba_metrics$mean_values), y = ba_metrics$upper_limit,
labels = paste0(
"Upper limit: ", round(ba_metrics$upper_limit, digits = 1)

),
pos = 2, cex = 0.70

)

30



## Label for lower limit of agreement
text(
x = max(ba_metrics$mean_values), y = ba_metrics$lower_limit,
labels = paste0(
"Lower limit: ", round(ba_metrics$lower_limit, digits = 1)

),
pos = 2, cex = 0.70

)
}

}

1 Use pch, col, bg, and cex arguments for the function to style and colour the points of
the plot.

2 Use pch argument to specify an integer value for the character type to use for the points
of the plot. See ?pch for details. Default is NULL which will use default pch value
used by R (which is 1 for a hollow circle).

3 Use col argument to provide a colour specification to use for colouring the points in
the scatter plot. Default is NULL which sets the colour to default colour used by
R (black). Note that for hollow points (pch from 0 to 14) and for points with a fill
element (pch from 21 to 25), col will colour the outline of the point. For pch values
from 15 to 19, col will colour the whole point. To colour the fill element of points
specified by pch from 21 to 25, see bg argument.

4 Use bg argument to provide a colour specification to use for colouring the fill element
of points with a fill element (pch from 21 to 25). Default is NULL which sets the fill
element to a light gray.

5 Use cex argument to provide a character expansion numeric value for the points of the
scatter plot. Default is NULL which will use the default size of points used by R which
is a value of 1.

We can use this function as follows:

plot_ba(
ba_metrics,
title = "Wright vs Mini-Wright",
xlab = "Mean PEFR (per subject)",
ylab = "Difference in PEFR (per subject)",
pch = 21,
col = "darkblue",
bg = "lightblue",
cex = 1.2

)

which outputs this plot (see Figure 3):

The output plot has much bigger points than the previous plot and because we used one of
the points with a fill element, the points have a dark blue outline and a light blue fill.

31



300 400 500 600

−
50

0
50

Wright vs Mini−Wright

Mean PEFR (per subject)

D
iff

er
en

ce
 in

 P
E

F
R

 (
pe

r 
su

bj
ec

t)

Mean difference: −2.1

Upper limit: 73.9

Lower limit: −78.1

Figure 3: Bland and Altman plot with customised points styles and colours

4.4 Some guidance on plotting functions

Data visualisation using plots in R is a very individual-preference type of approach. Hence,
the general recommendation on making plotting functions is to be a little bit opinionated
with the plot style (colours, line types and widths, text labels, sizes, etc.) based on your
individual style. Because you are making a function intended for your use, you want that
function to implement the style and look that you like. What this means, however, is that
your function is most likely something that will be used only by you or others who might
like your style and preference.

32


	Introduction to the exercise
	Task 1: Read the dataset
	Downloading files from the internet
	Reading text data
	Reading text data after downloading
	Reading text data without downloading
	Function to download and then read the dataset
	Function to conditionally download dataset and then read the dataset
	Function to conditionally download dataset and then read the dataset - overwrite


	Task 2: Calculate the metrics needed for a Bland and Altman plot
	Function to calculate Bland and Altman metrics - vectorised approach
	Function to calculate Bland and Altman metrics - data.frame approach
	Function to calculate Bland and Altman metrics - combined approach
	Function to calculate Bland and Altman metrics - modular approach
	Function to calculate Bland and Altman metrics - universal approach

	Task 3: Create a Bland and Altman plot
	Key Features of the Bland-Altman Plot
	Axes
	Data Points
	Central Line
	Limits of Agreement (LoA)

	Interpretation
	Creating a Bland and Altman plot
	Basic Bland and Altman plot
	Bland and Altman plot with labels
	Bland and Altman plot with colours and additional styling

	Some guidance on plotting functions


