
Creating your own functions
Learning the basics of R - Part 3

Ernest Guevarra

2023-11-27



Outline
Why write functions

When to write functions

How to write functions

Practical session

2



Why write functions
Allow automation of common tasks in a more powerful and general way than copy-and-pasting;

You can give a function an evocative name that makes your code easier to understand;
As requirements change, you only need to update code in one place, instead of many.
You eliminate the chance of making incidental mistakes when you copy and paste (i.e. updating a
variable name in one place, but not in another).

Fewer global variables: When you run a function, the intermediate variables that it creates are not stored
in your global environment. This saves memory and keeps your global environment cleaner.

Better documentation: Well documented functions help the user understand the steps of your
processing.

Easier to maintain / edit: When you create a function for a repeated task, it is easy to edit that one
function. Then every location in your code where that same task is performed is automatically updated.

3



You should consider writing a function whenever
you’ve copied and pasted a block of code more
than twice (i.e. you now have three copies of the
same code).

For example, take a look at this code.

What does it do?

df <- data.frame(
  a = c(1, 2, 1, 1, 1, 2, 1, 1, 2, 2),
  b = c(2, 2, 2, 1, 1, 1, 1, 2, 1, 2),
  c = c(1, 2, 1, 1, 2, 1, 2, 1, 2, 2)
)

df$a <- ifelse(df$a == 2, 0, df$a)
df$b <- ifelse(df$b == 2, 0, df$b)
df$c <- ifelse(df$c == 2, 0, df$c)

When to write functions

4



Original data:

##    a b c
## 1  1 2 1
## 2  2 2 2
## 3  1 2 1
## 4  1 1 1
## 5  1 1 2
## 6  2 1 1
## 7  1 1 2
## 8  1 2 1
## 9  2 1 2
## 10 2 2 2

Recoded data:

##    a b c
## 1  1 0 1
## 2  0 0 0
## 3  1 0 1
## 4  1 1 1
## 5  1 1 0
## 6  0 1 1
## 7  1 1 0
## 8  1 0 1
## 9  0 1 0
## 10 0 0 0

When to write functions

This is a good example of when writing a function will be useful/bene�cial.

6



We can create a function called
recode_values():

recode_values <- function(x) { 
  ifelse(x == 2, 0, x)
}

And apply it to the same data as follows:

df$a <- recode_values(df$a)
df$b <- recode_values(df$b)
df$c <- recode_values(df$c)

We get:

##    a b c
## 1  1 0 1
## 2  0 0 0
## 3  1 0 1
## 4  1 1 1
## 5  1 1 0
## 6  0 1 1
## 7  1 1 0
## 8  1 0 1
## 9  0 1 0
## 10 0 0 0

How to write functions

8



How to write functions
You need to pick a name for the function. In the example I used recode_values because this function
recodes the values based on a speci�ed rule (i.e., value of 2 is converted to 0).

You list the inputs, or arguments, to the function inside function. Here we have just one argument. If
we had more the call would look like function(x, y, z).

You place the code you have developed in body of the function, a { block that immediately follows
function(...).

9



Questions?

10



Practical session
We'll work through Exercise 2 - Manipulating objects and creating new functions in Practical R for

Epidemiologists (https://practical-r.org/exercise2.html) as a GitHub Classroom assignment

11

https://practical-r.org/exercise2.html


Thank you!
Slides can be viewed at https://oxford-ihtm.io/open-reproducible-science/session4.html

PDF version of slides can be downloaded at https://oxford-ihtm.io/open-reproducible-science/pdf/session4-
r-basics-part3.pdf

R scripts for slides available here

12

https://oxford-ihtm.io/open-reproducible-science/session4.html
https://oxford-ihtm.io/open-reproducible-science/pdf/session4-r-basics-part3.pdf
https://oxford-ihtm.io/open-reproducible-science/pdf/session4-r-basics-part3.pdf
https://github.com/OxfordIHTM/open-reproducible-science/blob/main/session4.Rmd

