
Open and Reproducible Science in R
Technical Handbook

Ernest Guevarra Proochista Ariana

12 October 2024

Table of contents

Preface 6
Organisation . 6

1. Tools . 6
2. Practices . 6
3. Processes . 6

How to use . 7

Introduction 8
All about R . 8
Open and reproducible science . 9

I Tools 11

1 Installing and setting up tools 12
1.1 Installing R, RStudio, and git . 12
1.2 Windows . 12

Step 1: Download and install R . 12
Step 2: Download and install RStudio . 12
Step 3: Download and install Rtools . 13
Step 4: Download and install Git for Windows 13

1.3 macOS . 13
Step 1: Download and install R . 13
1.3.1 Install RStudio . 14
1.3.2 Install git for macOS . 14

1.4 Register a GitHub account . 14
Step 1. Sign-up to GitHub . 14
Step 2. Set a GitHub username . 16
Step 3. Setup two-factor authentication (2FA) 17
Step 4. Get added to the Oxford IHTM CodeHub 17

2 Introduction to R and RStudio 18
2.1 What is R? . 18
2.2 Why use R? . 19
2.3 What is RStudio . 19

2

3 Introduction to git and GitHub 20
3.1 All about git . 20
3.2 All about GitHub . 20

4 Connecting RStudio with GitHub 22
4.1 Introduce yourself to git . 22
4.2 Create a GitHub personal access token (PAT) 23

Step 1: Go to Settings from your GitHub account menu 24
Step 2: From Settings navigate to Developer Settings 24
Step 3: From Developer Settings navigate to Personal Access Token 25
Step 4: Select Tokens (classic) . 26
Step 5: Click on Generate new token . 26
Step 6: Select Generate new token (classic) . 27
Step 7: Give your token a name . 27
Step 8: Set an expiry date for the token . 28
Step 9: Set scopes . 29
Step 10: Click on Generate token . 30
Step 11: Store your PAT . 30

II Practices 32

5 Writing functions 33

III Processes 43

6 Cloning a GitHub repository into your local computer using RStudio 44
6.1 Get the GitHub repository URL . 45

1. Go to the repository’s GitHub page . 45
2. Copy the repository URL . 46

6.2 Go to RStudio and create new project . 46
6.3 Choose Version Control . 47
6.4 Select Git . 48
6.5 Setup repository settings . 49

1. Paste the repository URL you copied earlier 50
2. Set the project directory name . 50
3. Set local directory . 50
4. Create project . 50

7 Committing your changes and pushing them to GitHub 51
7.1 Click on Commit in the Git tab on RStudio . 51
7.2 Getting changes saved and push to GitHub . 52

1. Stage changes . 53

3

2. Add a commit message . 53
3. Click on the Commit button . 53
4. Click on the Push button . 53

7.3 Initiate a pull request . 53
1. Click on the branches link from your repository 53
2. Make a pull request . 54
3. Enter a title for your pull request . 54
4. Create a pull request . 55
5. Wait for review . 55

8 Participating in an existing R/RStudio project 58
8.1 Clone the project to your local machine . 58
8.2 Create a new branch from the main branch . 58

8.2.1 Click on New Branch . 59
8.2.2 Name the new branch . 60

8.3 Code and make changes to your branch . 61
8.4 Commit and push your changes and initiate a pull request 61
8.5 Merge pull request . 62

9 Initiating an R/RStudio project 63
9.1 Create a new project in RStudio . 64

9.1.1 Click on New Project button on RStudio 64
9.1.2 Create a New Directory . 66
9.1.3 Select New Project as project type . 67
9.1.4 Specify details for new project . 68

9.2 2. Structure/organise your new project appropriately 70
9.3 3. Start coding . 71
9.4 Next steps . 71

10 Creating portable and reproducible scientific workflows 72
10.1 Create a new RStudio project . 75
10.2 Create an R file for package dependencies . 75
10.3 Create placeholder directories . 77
10.4 Create the target script file . 77
10.5 Edit the targets script file . 78

11 Contributing to Oxford IHTM CodeHub projects 79
11.1 Research software development . 79

11.1.1 Get familiar with R’s package writing process 79
11.1.2 Get familiar and reach intermediate level git and GitHub skills 80
11.1.3 Review our portfolio of research software 80
11.1.4 Communicate with developers . 81
11.1.5 Clone or fork the project repository . 81

4

References 82

5

Preface

The Open and Reproducible Science in R sub-module of the MSc in International Health and
Tropical Medicine is designed to equip students with the knowledge and skills necessary to
conduct both academic research and more importantly real-world data analysis that is
transparent, reproducible, and in line with the principles of open science.

This technical handbook serves as the go-to guide for MSc IHTM students to the various tools,
technologies, and processes that they will be learning and using within the module.

Organisation

This handbook is divided into three sections:

1. Tools

This section cover topics on the various tools and technologies that are to be used and/or
introduced in the module. The R language and environment for statistical computing and
graphics is primary of these as the module is specific to R. All other tools and technologies are
either built specific for use with R (e.g. RStudio which is the IDE of choice for the module and
for this handbook) or are general tools that enhance the userR experience and/or supports
known and accepted best practices for open and reproducible science using R.

2. Practices

This section covers topics on recommended best practices for optimal usage and maintenance
of R and RStudio.

3. Processes

This section covers topics on scientific/data analysis workflows with a focus on steps in initi-
ating and setting up and participating and contributing to such projects within an open and
reproducible framework.

6

https://www.tropicalmedicine.ox.ac.uk/study-with-us/msc-ihtm
https://www.tropicalmedicine.ox.ac.uk/study-with-us/msc-ihtm
https://r-project.org
https://posit.co/products/open-source/rstudio/

How to use

Even though all efforts have been made to order the chapters in a way that is coherent and
logical, this handbook is designed such that chapters are standalone topics in of themselves and
uses cross-referencing between chapters to make links to the various learning topics/concepts.
As such, the best use of this handbook is to use each chapter as a reference for more in-depth
discussion of a topic discussed in class rather than a book to read from start to finish.

7

Introduction

All about R

R is a language and environment for statistical computing and graphics. It is a GNU project
which is similar to the S language and environment which was developed at Bell Laboratories
(formerly AT&T, now Lucent Technologies) by John Chambers and colleagues. R can be
considered as a different implementation of S. There are some important differences, but much
code written for S runs unaltered under R.

R provides a wide variety of statistical (linear and nonlinear modelling, classical statistical
tests, time-series analysis, classification, clustering, etc.) and graphical techniques, and is
highly extensible. The S language is often the vehicle of choice for research in statistical
methodology, and R provides an open source route to participation in that activity.

One of R’s strengths is the ease with which well-designed publication-quality plots can be
produced, including mathematical symbols and formulae where needed. Great care has been
taken over the defaults for the minor design choices in graphics, but the user retains full
control.

R is available as free software under the terms of the Free Software Foundation’s GNU General
Public License in source code form. It compiles and runs on a wide variety of UNIX platforms
and similar systems (including FreeBSD and Linux), Windows and MacOS.

R is unique in that it is not general-purpose. It does not compromise by trying to do a lot
of things. It does a few things very well, mainly statistical analysis and data visualization.
While you can find data analysis and machine learning libraries for languages like Python, R
has many statistical functionalities built into its core. No third-party libraries are needed for
much of the core data analysis you can do with the language.

But even with this specific use case, it is used in every industry you can think of because
a modern business runs on data. Using past data, data scientists and data analysts can
determine the health of a business and give business leaders actionable insights into the future
of their company.

Just because R is specifically used for statistical analysis and data visualization doesn’t mean
its use is limited. It’s actually quite popular, ranking 19th in the TIOBE index of the most
popular programming languages.

8

https://r-project.org
https://en.wikipedia.org/wiki/GNU
https://en.wikipedia.org/wiki/S_(programming_language)
https://www.python.org/
https://www.tiobe.com/tiobe-index/

Academics, scientists, and researchers use R to analyze the results of experiments. In addition,
businesses of all sizes and in every industry use it to extract insights from the increasing
amount of daily data they generate.

Open and reproducible science

Open and reproducible science is the practice of science in such a way that others can col-
laborate and contribute and where research data, lab notes and other research processes are
freely available, under terms that enable reuse, redistribution and reproduction of the research
and its underlying data and methods. Reproducible research means that research data and
code are made available so that others are able to reach the same results as are claimed in
scientific outputs. Closely related is the concept of replicability, the act of repeating a scien-
tific methodology to reach similar conclusions. These concepts are core elements of empirical
research.

Open science is important because it enhances the accessibility, transparency, and collab-
oration of scientific research.

Open science makes research data, publications, and resources freely available to anyone, re-
gardless of their location, institutional affiliation, or financial situation. This democratises
knowledge and ensures that even those outside of well-funded research institutions can access
the latest scientific findings.

By making data, methods, and results openly available, open science allows other researchers
to verify, replicate, and build upon previous work. This transparency is essential for the
self-correcting nature of science, helping to ensure the reliability and integrity of research
findings.

When data and findings are openly shared, other researchers can more quickly build on existing
work, leading to faster scientific progress. This is particularly important in fields like medicine
or environmental science, where rapid advancements can have significant societal impacts.

Open science fosters collaboration across disciplines, institutions, and borders. Researchers can
combine their expertise and resources to tackle complex problems, leading to more innovative
solutions. Open data and resources also encourage citizen science, where the general public
can contribute to scientific research.

By making research processes and findings open and accessible, science becomes more transpar-
ent to the public, which can increase trust in scientific research. Open science also allows the
public to engage more directly with science, fostering a greater understanding and appreciation
of scientific work.

Open science reduces duplication of effort by making data and methods available for reuse.
Researchers can build on existing work rather than starting from scratch, which can save time

9

and resources. Additionally, open access to research outputs can reduce costs for institutions
and researchers who would otherwise need to pay for access to publications.

Many of the world’s most pressing challenges, such as climate change, pandemics, and poverty,
require global collaboration and knowledge-sharing. Open science facilitates this by making
research outputs accessible to scientists and policymakers worldwide, particularly in low- and
middle-income countries that may lack access to expensive scientific resources.

In essence, open science enhances the efficiency, equity, and impact of scientific research, mak-
ing it a critical approach for advancing knowledge and addressing global challenges.

The Open and Reproducible Science in R module is designed to give MSc IHTM students
a foundational understanding and appreciation of the pillars of open science more broadly
and within that the concepts, methods and tools for reproducible research more specifically.
To further the students’ learning, practical examples and exercises are walked through and
discussed using the R language for statistical computing as a way to practically demonstrate
these concepts.

10

Part I

Tools

11

1 Installing and setting up tools

Following are the steps to installing R, RStudio, and Git depending on your operating sys-
tem.

1.1 Installing R, RStudio, and git

1.2 Windows

Step 1: Download and install R

Important that R is installed first. R is the main software and is needed for RStudio to work
properly. R should always be installed first.

Go to https://cran.r-project.org and click on the link that says Download R for Windows.
In the following page, click on the link that says install R for the first time.

Then click on Download R-4.X.X for Windows (latest release version). This will start
the download process.

Once downloaded, go to the .exe file in your Downloads folder, double-click and follow all
the install prompts, selecting recommended options all the time.

Step 2: Download and install RStudio

This step requires that Step 1 has been done and was successful.

Go to https://posit.co/download/rstudio-desktop/ and select the download specific for your
Windows machine.

Once downloaded, double-click on .exe file downloaded to your Downloads folder and then
follow all install prompts, always selecting recommended options.

12

https://cran.r-project.org
https://posit.co/download/rstudio-desktop/

Step 3: Download and install Rtools

For the things that you will be taught in the Open and Reproducible Science sub-module,
you we will need to expand the installation of R by installing the Rtools software.

Go to https://cran.r-project.org/bin/windows/Rtools/ and choose to download the latest ver-
sion of the installer (which is the Rtools version compatible with the R version you have
installed in Step 1).

Once you have downloaded the .exe file, double-click on the .exe file and follow all install
prompts. Choose all the recommended options.

Step 4: Download and install Git for Windows

For the things that you will be taught in the Open and Reproducible Science sub-module,
you we will need to install Git for Windows.

Go to this link - https://github.com/git-for-windows/git/releases/latest - to download the
latest version of git. Make sure to select the version compatible with your Windows machine
(64-bit or 32-bit).

Once you have downloaded the .exe file, double-click it and then follow all install prompts.
Choose all recommended options.

1.3 macOS

Step 1: Download and install R

Important that R is installed first. R is the main software and is needed for RStudio to work
properly. R should always be installed first.

Go to https://cran.r-project.org and click on the link that says Download R for macOS. In
the following page, you will have two choices of R versions to install. Make sure to install the
appropriate version for your macOS version (Apple Silicon vs Apple Intel version). Click on
the download link for your macOS version. This will start the download process of the .pkg
file specific for installing in macOS computers.

Once downloaded, go to the .pkg file in your Downloads folder, double-click and follow all the
install prompts, selecting recommended options all the time.

13

https://cran.r-project.org/bin/windows/Rtools/
https://github.com/git-for-windows/git/releases/latest
https://cran.r-project.org

1.3.1 Install RStudio

This step requires that Step 1 has been done and was successful.

Go to https://posit.co/download/rstudio-desktop/ and select the download specific for your
macOS machine.

Once downloaded, double-click on .dmg file downloaded to your Downloads folder and then
follow all install prompts, always selecting recommended options.

1.3.2 Install git for macOS

For the things that you will be taught in the Open and Reproducible Science sub-module,
you we will need to install git for macOS. Apple machines are already pre-installed with git
but it is usually an Apple specific version of git and tends to be older and not configured in
the way we need it. So we need to install another version of it that comes with Apple’s Xcode
command line tools.

To install, go to the macOS terminal and type the following command:

xcode-select --install

1.4 Register a GitHub account

For the Open and Reproducible Science in R sub-module, you will need a GitHub account
to be able to receive the code materials and assignments that will be provided. This is the
mechanism by which these materials will be distributed. Hence you will need to register an
account with GitHub (if you don’t already have one). It’s free!

Step 1. Sign-up to GitHub

Go to https://github.com.

On the upper right hand corner of the page, click on Sign-up button

14

https://posit.co/download/rstudio-desktop/
https://github.com

You will be then prompted to provide an email address to register your account with.

Note

With regard to the email address to use for creating a GitHub account, best practice is
to use an email address that you will have access to all the time. Email addresses such
as those for school (if you are a student) or for your current work may not always be the
best email address to use as these email addresses tend to be time-limited (i.e., you lose

15

the email address once you graduate or once you leave your current work).

You will then be prompted for a password

Then follow all other prompts after this including confirmation of your email and creating a
GitHub username (see next step).

Step 2. Set a GitHub username

With regard to creating/selecting a GitHub username, following are some best practice recom-
mendations (Jenny Bryan and Jim Hester n.d.).

Tips for selecting GitHub username

• Incorporate your actual name as this lets people know who they’re dealing with
and also makes your username easier for people to guess or remember.

• Reuse your username from other contexts, e.g., Twitter or Slack.

• Pick a username that will be appropriate revealing to a future boss.

• Shorter is better than longer.

• Be as unique as possible in as few characters as possible.

• Make it timeless and context-agnostic. Don’t add a date or year or a reference to
your current location, university, or employer.

16

• Avoid the use of upper vs. lower case to separate words. We highly recommend all
lowercase. A better strategy for word separation is to use a hyphen (-).

Step 3. Setup two-factor authentication (2FA)

It is important to keep your GitHub account secure. Any breach in security of your online
accounts, including GitHub, not only affects you but also those that you collaborate with. To
increase the security of your GitHub account, please enable two-factor authentication (2FA)
for your account. This can be done here. There are 4 options for 2FA in GitHub. We
recommended enabling at least 2 of these options. If you are familiar with use of passkeys, we
recommend using this authentication approach in addition to 2FA.

Step 4. Get added to the Oxford IHTM CodeHub

The Oxford iHealth CodeHub is the organisational GitHub account for the MSc IHTM. To be
included in the organisation, share your GitHub username to the sub-module lead who will
then add you to the organisation. This is an important step as assignments and exercises for
the sub-module are distributed through GitHub and GitHub Classroom via this organisational
account.

Important

The Oxford iHealth CodeHub organisational GitHub account requires members to have
2FA activated. It is therefore imperative that you enable 2FA on your account to be
included in the organisation.

Note

You will soon receive a message at the email address you registered to GitHub with
inviting you to join the Oxford iHealth CodeHub organisation. Accept the invitation.

17

https://github.com/settings/security
https://github.com/OxfordIHTM

2 Introduction to R and RStudio

2.1 What is R?

R is a system for data manipulation, calculation, and graphics. It provides:

• Facilities for data handling and storage

• A large collection of tools for data analysis

• Graphical facilities for data analysis and display

• A simple but powerful programming language

R is often described as an environment for working with data. This is in contrast to a statistical
package which is a collection of very specific tools. R is not strictly a statistics system but a
system that provides many classical and modern statistical procedures as part of a broader
data-analysis tool. This is an important difference between R and other statistical systems.
In R a statistical analysis is usually performed as a series of steps with intermediate results
being stored in objects. Systems such as SPSS and SAS provide copious output from (e.g.)
a regression analysis whereas R will give minimal output and store the results of a fit for
subsequent interrogation or use with other R functions. This means that R can be tailored
to produce exactly the analysis and results that you want rather than produce an analysis
designed to fit all situations.

R is a language based product. This means that you interact with R by typing commands
such as:

table(SEX, LIFE)

rather than by using menus, dialog boxes, selection lists, and buttons. This may seem to be
a drawback but it means that the system is considerably more flexible than one that relies
on menus, buttons, and boxes. It also means that every stage of your data management and
analysis can be recorded and edited and re-run at a later date. It also provides an audit trail
for quality control purposes.

R is available under UNIX (including Linux), the Apple operating system macOS, and Mi-
crosoft Windows. The method used for starting R will vary from system to system. On UNIX
systems you may need to issue the R command in a terminal session or click on an icon or
menu option if your system has a windowing system. On Apple systems R will be available

18

as an application but can also be run in a terminal session. On Microsoft Windows systems
there will usually be an icon on the Start menu or the desktop.

2.2 Why use R?

R is an open source system and is available under the GNU general public license (GPL)
which means that it is available for free but that there are some restrictions on how you are
allowed to distribute the system and how you may charge for bespoke data analysis solutions
written using the R system. Details of the general public license are available from http:
//www.gnu.org/copyleft/gpl.html.

R is available for download from http://www.r-project.org/.

This is also the best place to get extension packages and documentation. You may also
subscribe to the R mailing lists from this site. R is supported through mailing lists. The level
of support is at least as good as for commercial packages. It is typical to have queries answered
in a matter of a few hours.

Even though R is a free package it is more powerful than most commercial packages. Many
of the modern procedures found in commercial packages were first developed and tested using
R or S-Plus (the commercial equivalent of R).

2.3 What is RStudio

RStudio is an integrated development environment (IDE) for R. It includes a console,
syntax-highlighting editor that supports direct code execution, as well as tools for plotting,
history, debugging and workspace management.

RStudio is available in open source and commercial editions and runs on the desktop (Windows,
macOS, and Linux) or in a browser connected to RStudio Server or RStudio Workbench
(Debian/Ubuntu, Red Hat/CentOS, and SUSE Linux).

https://youtu.be/n3uue28FD0w?si=DAMZrT6xhLS8ZMLH

19

http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html
http://www.r-project.org/
https://youtu.be/n3uue28FD0w?si=DAMZrT6xhLS8ZMLH

3 Introduction to git and GitHub

3.1 All about git

git is a version control system for software development. It allows developers to keep track of
changes made to their code and collaborate with other developers on a project. git also allows
for easy rollbacks and branch management. It is widely used in the software industry and is
considered one of the best version control systems available.

git was developed by Linus Torvalds in 2005. He created git as a replacement for the proprietary
version control system he was using at the time. The development of git was driven by the
need for a distributed version control system, which allows multiple developers to work on a
project simultaneously, without the need for a central server. Linus Torvalds is also known for
creating the Linux operating system kernel.

To use git in your machines, you will need to install it as described in Section 1.1.

3.2 All about GitHub

GitHub is a web-based platform that provides hosting for software development and a com-
munity of developers to collaborate, share and learn from each other. It is built on top of
git, which is the version control system used for managing and tracking changes to the code.
Developers can use GitHub to store and manage their code, collaborate with other developers,
and track and manage issues and bugs. It also provides tools for code review, project man-
agement, and documentation. It is widely used by developers and organizations to host and
share code, as well as to build and maintain open-source software.

GitHub is not a software you need to install. Rather it is a remote or cloud-based server that
holds its users’ code versioned using the git version control system and to which a user’s local,
git-versioned code syncs/communicates with.

A good illustration of the git and GitHub relationship can be viewed below:

20

https://git-scm.com/
https://en.wikipedia.org/wiki/Linus_Torvalds
https://github.com

21

4 Connecting RStudio with GitHub

Once RStudio is installed and a GitHub account has been created and registered, the final step
in the R, RStudio, git, and GitHub dance is to create git-related settings on your machine that
will identify you as a unique/specific git user and then creating a GitHub personal access
token (PAT) which will serve as the key or proof that you will use to identify yourself as the
git user you claim to be whenever you try to syn/connect to your GitHub account via RStudio
or any other tool on your local computer.

Follow are the steps you will need to perform:

4.1 Introduce yourself to git

Open RStudio and then select the Terminal tab in the console pane.

The terminal is the tool used to interface with your computer through commands written in a
programming language called bash. Most of you would have never used the terminal because
we mostly use software built-in our computers that provide a graphical user interface
(GUI) to perform operations and tasks.

RStudio comes with the terminal tool built in and usually is already available from the console
pane as a separate table along side the R console (see below). By default, whenever you open
RStudio, this tab for the terminal tool should already be available.

If if is not present, you can easily open a new terminal tab in the console pane by going to the
RStudio menu ribbon and clicking on:

Tools --> Terminal --> New Terminal

or you can use the ALT + SHIFT + R keyboard shortcut.

In this step, you are basically going to issue a set of commands to your computer to save and
store specific settings for the git software that you have installed.

Specifically, you are going to let git know who you are (your name) and what your email
address (associated with your GitHub account) is.

The commands will be issued on the terminal. The commands are:

22

git config --global user.name 'YOUR FULL NAME'
git config --global user.email 'YOUR EMAIL ADDRESS'

Make sure to supply your full proper name (and not your username you created in GitHub).

Make sure that the email you provide is the email address you used to register and create an
account with GitHub.

Unless there was an error in your syntax, you should not expect any output on the terminal
after you issue the commands. To check that your name and email address have been recorded
and/or that the name and email address recorded is correct, you can issue the following
command:

git config --global --list

Here is an example of what you will see after issue this command:

user.name=YOUR FULL NAME
user.email=YOUR EMAIL ADDRESS

Check this output to what you expect it to be specified as. If the information is correct, then
you’ve completed this step. If you need to correct any of this information, then repeat this
step making sure that the name and email address you provide is correct.

4.2 Create a GitHub personal access token (PAT)

Now that you have introduced yourself to the git that is installed in your local ma-
chine/computer, you should now visit GitHub on a browser and create a personal access
token (PAT).

When you communicate/sync/interact with a remote git server, such as GitHub, you have to
include credentials in the communication you are sending. These credentials prove that you
are a specific GitHub user, who’s allowed to do whatever you’re asking to do.

git can communicate with a remote server using one of two protocols, HTTPS or SSH, and
the different protocols use different credentials.

Here we describe the credential setup for the HTTPS protocol, which is what we recommend if
you have no burning reason to pick SSH. With HTTPS, we will use a PAT to connect securely
to GitHub from RStudio.

Please note that the PAT is not the same as the password you provided when registering for
your GitHub account. Also, in performing a connection to GitHub via HTTPS protocol, your
password is not an acceptable credential for communicating with GitHub.

To create a GitHub PAT, you need to:

23

https://github.com

Step 1: Go to Settings from your GitHub account menu

Login to your GitHub account. On the upper right hand corner of the GitHub page you will
see your account icon. Click on it to reveal a drop down menu as shown below. Select the
Settings option.

Step 2: From Settings navigate to Developer Settings

In the Settings page, find the Developer Settings option on the left hand sidebar as shown
below:

24

Step 3: From Developer Settings navigate to Personal Access Token

In the Developer Settings page, find the Personal Access Token option on the left hand
sidebar as shown below:

25

Step 4: Select Tokens (classic)

Step 5: Click on Generate new token

26

Step 6: Select Generate new token (classic)

Step 7: Give your token a name

27

The token name should be short but descriptive of the where or how you will use the token.
Since we are using this to connect and allow communication between RStudio and GitHub,
rstudio can be a good name that would remind you that this is what you are using to secure
the connection/communication between your RStudio and your GitHub account.

Step 8: Set an expiry date for the token

By default, GitHub will set a 30 day validity for any new token created. Clicking on the option
menu will show the other possible time periods to choose from including No expiry date.

It is best practice to assign an expiry date for security tokens such as the GitHub PAT. And
a 30 day validity is standard practice. However, in reality, it is cumbersome to be creating
new tokens frequently and for beginners, having to go through these steps again can be quite
a chore. For the purposes of this lecture series, we would recommend setting the expiry for
about 90 days to cover the whole period and then as a group, we’ll have a renew GitHub PAT
party on our last session.

28

Step 9: Set scopes

Scopes are the types of permissions that you are attaching the token you are generating. This
is again a security feature as takens should only be given specific and limited permissions based
on what you intend the token to be used for. It is not good practice to give a token complete
or unlimited permissions as you are exposing your account to high risk if and when your token
gets compromised.

For general R users, the following scopes are currently recommended:

• repo
• workflow
• gist
• user

29

Step 10: Click on Generate token

After clicking you will now see a long string of characters and numbers which is your GitHub
PAT. It is important to remember that once you see the generated GitHub PAT, you should
copy this right away and store it securely.

Step 11: Store your PAT

Treat your GitHub PAT in the same way you would treat your password for online accounts.
The best way to securely store the GitHub PAT is using a password manager (1Password,
LastPass, Bitwarden). If you have a macOS computer, you can save your GitHub PAT into
your computer’s keychain.

Warning

Non-secure password/token storage practices that has been done by other students before
are:

• Email their password/token to themselves

If you are using free email services such as Gmail, then this is a highly non-secure method.
Others use their University of Oxford email address and argue that this is secure compared
to using the free email services. Whilst it is true that a university email account is more

30

https://1password.com/
https://www.lastpass.com/
https://bitwarden.com/

secure, email communications and email storage is still one of the most vulnerable places
to keep something that is meant to be kept secret.

• Paste the token into a Word document and save in personal computer with the
filename GITHUB_PAT.docx

• Paste the token into a Word document and save in Dropbox or in Google Drive

Please AVOID these methods.

31

Part II

Practices

32

5 Writing functions

For this topic, we will use data on weight and height to calculate body mass index. As a
refresher, body mass index is calculated as follows:

Body mass index = 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑘𝑔𝑠)
ℎ𝑒𝑖𝑔ℎ𝑡 (𝑚)2

For this topic on writing functions in R, we will use BMI as an example to explore and
demonstrate how we can create our own functions in R.

Let’s say for example that you have been doing a research on children aged 11 years and older
in 3 schools and you have collected the following data:

School 1516

school1516

school sex ageMonths weight height
427 1516 1 138 24.5 126.0
428 1516 1 150 28.3 136.3
429 1516 1 162 32.2 143.5
430 1516 1 162 32.7 143.5
431 1516 1 150 28.6 137.0
432 1516 2 138 26.5 134.0
433 1516 1 150 29.9 139.2
434 1516 1 150 30.0 139.5
435 1516 1 162 34.0 148.0
436 1516 1 138 25.4 135.7
437 1516 1 150 32.3 143.0
438 1516 2 174 38.3 153.5
439 1516 2 162 41.6 151.0
440 1516 1 150 30.7 145.0
441 1516 2 186 46.8 155.2
442 1516 1 186 46.6 163.4
443 1516 1 150 33.5 145.5
444 1516 1 186 47.0 164.0
445 1516 1 174 41.1 159.5

33

446 1516 2 162 39.1 152.2
447 1516 2 174 40.9 155.5
448 1516 2 162 39.7 153.0
449 1516 2 162 40.9 153.2
450 1516 1 150 34.2 147.5
451 1516 2 150 41.8 149.4
452 1516 1 138 28.0 141.5
453 1516 1 138 30.0 142.0
454 1516 1 138 33.1 142.0
455 1516 1 186 46.1 167.5
456 1516 1 150 36.2 149.0
457 1516 2 162 47.4 156.0
458 1516 1 150 30.3 150.2
459 1516 2 150 36.4 152.1
460 1516 2 150 36.4 155.0
461 1516 2 150 44.1 155.0
462 1516 2 162 42.3 160.1
463 1516 2 179 50.4 163.5
464 1516 1 150 37.6 155.0
465 1516 2 138 36.0 154.5
466 1516 2 138 46.1 156.0

School 1522

school1522

school sex ageMonths weight height
646 1522 1 203 30.6 140.5
647 1522 1 174 30.8 140.0
648 1522 1 162 29.3 136.3
649 1522 1 150 24.0 132.0
650 1522 1 150 28.1 132.1
651 1522 2 150 27.2 134.9
652 1522 1 162 34.2 139.2
653 1522 1 150 25.5 134.2
654 1522 1 138 24.6 129.0
655 1522 1 174 36.4 147.5
656 1522 1 150 28.7 137.5
657 1522 1 186 45.8 155.6
658 1522 1 174 36.3 151.6
659 1522 1 150 31.0 139.5
660 1522 1 138 29.0 134.3

34

661 1522 1 179 38.3 155.5
662 1522 2 138 31.3 138.4
663 1522 1 162 36.5 148.8
664 1522 1 155 36.8 145.2
665 1522 1 138 28.3 136.8
666 1522 1 138 26.8 137.3
667 1522 2 138 32.6 141.4
668 1522 2 138 31.9 143.0
669 1522 1 174 42.6 160.7
670 1522 2 198 57.8 158.0
671 1522 2 162 43.9 153.5
672 1522 2 150 35.1 150.6
673 1522 2 186 52.6 159.6
674 1522 2 150 45.1 152.8
675 1522 2 138 34.6 147.2
676 1522 2 150 45.3 153.1
677 1522 1 186 51.8 170.2
678 1522 2 150 57.1 154.2
679 1522 2 138 33.5 149.2
680 1522 1 150 36.3 154.1
681 1522 1 174 44.0 169.1
682 1522 2 150 44.5 158.3
683 1522 2 150 51.5 159.1
684 1522 2 138 47.4 157.8
685 1522 2 138 36.8 158.5
686 1522 2 138 52.0 161.0

School 1525

school1525

school sex ageMonths weight height
752 1525 1 186 26.2 137
753 1525 1 186 32.7 138
754 1525 1 150 25.9 130
755 1525 1 162 30.4 137
756 1525 2 138 24.4 129
757 1525 2 138 23.8 130
758 1525 1 150 26.1 133
759 1525 1 150 26.4 135
760 1525 1 174 35.1 148
761 1525 1 162 28.7 142

35

762 1525 1 150 28.0 136
763 1525 1 174 34.0 149
764 1525 1 186 40.6 155
765 1525 2 150 35.8 142
766 1525 1 150 35.4 140
767 1525 2 138 27.8 137
768 1525 2 138 28.2 137
769 1525 2 138 29.7 139
770 1525 2 138 30.9 139
771 1525 1 138 28.2 137
772 1525 2 138 26.2 140
773 1525 2 138 26.6 140
774 1525 1 138 27.2 138
775 1525 2 138 27.0 141
776 1525 1 150 31.3 145
777 1525 2 162 33.9 152
778 1525 2 162 42.0 153
779 1525 2 185 38.3 157
780 1525 2 138 31.0 145
781 1525 2 138 32.3 145
782 1525 1 139 35.1 144
783 1525 2 150 36.4 152
784 1525 2 138 32.7 147
785 1525 1 174 44.9 166
786 1525 2 138 32.2 148
787 1525 2 138 36.4 148
788 1525 1 138 31.4 146
789 1525 2 138 45.0 149
790 1525 2 162 49.4 160
791 1525 2 138 34.3 150
792 1525 1 138 30.0 148
793 1525 2 150 37.0 156
794 1525 2 162 52.2 165
795 1525 2 138 42.9 158

In this dataset, the units of the height measurement is in centimetres.

Using what we have learned earlier on calculating BMI using R, I can perform the following
R commands to get the BMI for each child in each of the schools:

Calculate BMI for children in school 1516
school1516$weight / (school1516$height / 100) ^ 2

36

Calculate BMI for children in school 1516
school1522$weight / (school1516$height / 100) ^ 2

Calculate BMI for children in school 1516
school1525$weight / (school1516$height / 100) ^ 2

Because the commands are repetitive, I can easily copy and paste my initial line of code to
calculate BMI for children in school 1516 and then just change the object names accordingly
to calculate the BMI for children in the two other schools.

When I run these lines of code, I get the following results:

[1] 15.43210 15.23333 15.63695 15.87976 15.23789 14.75830 15.43095 15.41604
[9] 15.52228 13.79349 15.79539 16.25481 18.24481 14.60166 19.42954 17.45347

[17] 15.82409 17.47472 16.15550 16.87903 16.91463 16.95929 17.42632 15.71962
[25] 18.72730 13.98444 14.87800 16.41539 16.43128 16.30557 19.47732 13.43083
[33] 15.73414 15.15088 18.35588 16.50280 18.85363 15.65036 15.08153 18.94313

Warning in school1522$weight/(school1516$height/100)^2: longer object length is
not a multiple of shorter object length

[1] 19.27438 16.57903 14.22865 11.65487 14.97150 15.14814 17.65012 13.10363
[9] 11.23083 19.76704 14.03492 19.43787 15.92035 14.74435 12.03967 14.34481

[17] 14.78490 13.57079 14.46527 12.21679 11.08343 13.92627 13.59168 19.58058
[25] 25.89564 21.92561 17.40726 26.08609 16.07485 15.58488 18.61440 22.96095
[33] 24.68185 13.94381 15.10926 17.16604 16.64656 21.43600 19.85735 15.12163
[41] 32.75384

Warning in school1525$weight/(school1516$height/100)^2: longer object length is
not a multiple of shorter object length

[1] 16.50290 17.60176 12.57755 14.76284 13.00016 13.25462 13.46983 13.56612
[9] 16.02447 15.58555 13.69260 14.42986 17.80624 17.02735 14.69670 10.41216

[17] 13.32058 11.04253 12.14611 12.17362 10.83529 11.36315 11.58914 12.41023
[25] 14.02307 16.93116 20.82920 18.99425 11.04923 14.54889 14.42308 16.13472
[33] 14.13479 18.68887 13.40271 14.20099 11.74611 18.73049 20.69522 14.09435
[41] 18.89645 19.91636 25.34934 20.83308

The calculation for the BMI of children in school 1516 seems to have completed without issues
and a vector of BMI results have been produced. However, for school 1522 and school 1525,
there is a warning saying:

37

Warning in school1522$weight/(school1516$height)^2: longer object length is not a multiple
of shorter object length

Although a result has been provided, the warning gives me an indication that someting is not
quite right with my calculation and when I inspect further, I notice that in my formula for
school 1522 and for school 1525, my denominator is still using data for school 1516 and this is
most likely what is causing the warning message.

So, to correct this I go back to my lines of code and edit the denominators for school 1522 and
school 1525 as follows:

Calculate BMI for children in school 1516
school1516$weight / (school1516$height / 100) ^ 2

Calculate BMI for children in school 1516
school1522$weight / (school1522$height / 100) ^ 2

Calculate BMI for children in school 1516
school1525$weight / (school1525$height / 100) ^ 2

which gives me:

[1] 15.43210 15.23333 15.63695 15.87976 15.23789 14.75830 15.43095 15.41604
[9] 15.52228 13.79349 15.79539 16.25481 18.24481 14.60166 19.42954 17.45347

[17] 15.82409 17.47472 16.15550 16.87903 16.91463 16.95929 17.42632 15.71962
[25] 18.72730 13.98444 14.87800 16.41539 16.43128 16.30557 19.47732 13.43083
[33] 15.73414 15.15088 18.35588 16.50280 18.85363 15.65036 15.08153 18.94313

[1] 15.50132 15.71429 15.77161 13.77410 16.10277 14.94669 17.65012 14.15908
[9] 14.78277 16.73082 15.18017 18.91674 15.79459 15.92991 16.07852 15.83937

[17] 16.34076 16.48493 17.45479 15.12217 14.21653 16.30492 15.59978 16.49597
[25] 23.15334 18.63150 15.47594 20.65000 19.31656 15.96837 19.32626 17.88178
[33] 24.01416 15.04898 15.28626 15.38741 17.75817 20.34543 19.03550 14.64837
[41] 20.06095

[1] 13.95919 17.17076 15.32544 16.19692 14.66258 14.08284 14.75493 14.48560
[9] 16.02447 14.23329 15.13841 15.31463 16.89906 17.75441 18.06122 14.81166

[17] 15.02477 15.37188 15.99296 15.02477 13.36735 13.57143 14.28271 13.58081
[25] 14.88704 14.67278 17.94182 15.53816 14.74435 15.36266 16.92708 15.75485
[33] 15.13258 16.29409 14.70051 16.61797 14.73072 20.26936 19.29687 15.24444
[41] 13.69613 15.20381 19.17355 17.18475

38

I now do not get the warning message and the expected length of BMI values for each school
has now been produced.

From this short example above, we realise how tedious a task it is to type in the code above
every time we need to calculate BMI. Also, it becomes even challenging to debug issues with
the code because we have to review and edit (as needed) each iteration of the calculation to
see where it may have gone wrong (especially when doing a cut and paste approach).

It would be better (and easier) to have a function that calculates and displays the BMI values
automatically. Fortunately, R allows us to do just that.

The function() function allows us to create new functions in R with the following generic
syntax:

function_name <- function(argument1, argument2, ...) {
Your code here

}

Using this template/generic syntax, we apply it to create a function called calculate_bmi as
follows:

calculate_bmi <- function(weight, height) {
weight / height ^ 2

}

We now have a function for calculating and producing BMI values.

Let us now test it with our 3 sets of data:

School 1516

calculate_bmi(
weight = school1516$weight,
height = school1516$height / 100

)

[1] 15.43210 15.23333 15.63695 15.87976 15.23789 14.75830 15.43095 15.41604
[9] 15.52228 13.79349 15.79539 16.25481 18.24481 14.60166 19.42954 17.45347

[17] 15.82409 17.47472 16.15550 16.87903 16.91463 16.95929 17.42632 15.71962
[25] 18.72730 13.98444 14.87800 16.41539 16.43128 16.30557 19.47732 13.43083
[33] 15.73414 15.15088 18.35588 16.50280 18.85363 15.65036 15.08153 18.94313

School 1522

39

calculate_bmi(
weight = school1522$weight,
height = school1522$height / 100

)

[1] 15.50132 15.71429 15.77161 13.77410 16.10277 14.94669 17.65012 14.15908
[9] 14.78277 16.73082 15.18017 18.91674 15.79459 15.92991 16.07852 15.83937

[17] 16.34076 16.48493 17.45479 15.12217 14.21653 16.30492 15.59978 16.49597
[25] 23.15334 18.63150 15.47594 20.65000 19.31656 15.96837 19.32626 17.88178
[33] 24.01416 15.04898 15.28626 15.38741 17.75817 20.34543 19.03550 14.64837
[41] 20.06095

School 1525

calculate_bmi(
weight = school1525$weight,
height = school1525$height / 100

)

[1] 13.95919 17.17076 15.32544 16.19692 14.66258 14.08284 14.75493 14.48560
[9] 16.02447 14.23329 15.13841 15.31463 16.89906 17.75441 18.06122 14.81166

[17] 15.02477 15.37188 15.99296 15.02477 13.36735 13.57143 14.28271 13.58081
[25] 14.88704 14.67278 17.94182 15.53816 14.74435 15.36266 16.92708 15.75485
[33] 15.13258 16.29409 14.70051 16.61797 14.73072 20.26936 19.29687 15.24444
[41] 13.69613 15.20381 19.17355 17.18475

In our example here, the calculate_bmi() function helped a little bit in making the code to
calculate BMI for each student in each school more efficient. But the efficiency that functions
provide become more evident when you need to make more complex operations. For example,
what if you need to get the mean BMI for students in each school? Without a function, we
will have to do the following script for each school:

School 1516

Calculate BMI for children in school 1516
bmi_school1516 <- school1516$weight / (school1516$height / 100) ^ 2

Get the mean BMI for children in school 1516
mean_bmi_school1516 <- mean(bmi_school1516)

mean_bmi_school1516

40

[1] 16.28491

School 1522

Calculate BMI for children in school 1522
bmi_school1522 <- school1522$weight / (school1522$height / 100) ^ 2

Get the mean BMI for children in school 1522
mean_bmi_school1522 <- mean(bmi_school1522)

mean_bmi_school1522

[1] 16.89955

School 1525

Calculate BMI for children in school 1525
bmi_school1525 <- school1525$weight / (school1525$height) ^ 2

Get the mean BMI for children in school 1525
mean_bmi_school1525 <- mean(bmi_school1525)

mean_bmi_school1525

[1] 0.001564695

As the operations/calculations we want to perform become more complex, the copy and paste
method becomes more and more tedious. With the function approach, we can use the follow-
ing:

calculate_mean_bmi <- function(weight, height) {
bmi <- weight / height ^ 2

mean_bmi <- mean(bmi)

return(mean_bmi)
}

Applying the function to the datasets, we get:

School 1516

41

calculate_mean_bmi(
weight = school1516$weight,
height = school1516$height / 100

)

[1] 16.28491

School 1522

calculate_mean_bmi(
weight = school1522$weight,
height = school1522$height / 100

)

[1] 16.89955

School 1525

calculate_mean_bmi(
weight = school1525$weight,
height = school1525$height / 100

)

[1] 15.64695

42

Part III

Processes

43

6 Cloning a GitHub repository into your local
computer using RStudio

This tutorial is a summary of the the instructions described here.

44

https://docs.github.com/en/repositories/creating-and-managing-repositories/cloning-a-repository

6.1 Get the GitHub repository URL

1. Go to the repository’s GitHub page

Click on the green button that is labeled code.

45

2. Copy the repository URL

Click on the copy to clipboard icon to copy the repository URL.

6.2 Go to RStudio and create new project

46

6.3 Choose Version Control

47

6.4 Select Git

48

6.5 Setup repository settings

49

1. Paste the repository URL you copied earlier

2. Set the project directory name

The project directory name should be specified already after you paste the repository URL.
Use the suggested directory name.

3. Set local directory

Browse for the directory on your local computer where you want to save the files for the
specified project.

4. Create project

Click on the Create Project button/icon.

You will now have the GitHub repository in your local computer.

50

7 Committing your changes and pushing them
to GitHub

Following are the steps to take in committing your changes in RStudio and pushing them to
GitHub.

7.1 Click on Commit in the Git tab on RStudio

51

7.2 Getting changes saved and push to GitHub

52

1. Stage changes

Tick the box beside the file that has changed to stage the changes.

2. Add a commit message

Every time you make a commit you must also write a short commit message.

Write a commit message in the Commit message dialog box. In the commit message, describe
the changes that you made.

3. Click on the Commit button

4. Click on the Push button

7.3 Initiate a pull request

1. Click on the branches link from your repository

53

2. Make a pull request

Click on the Make pull request link on the appropriate branch.

3. Enter a title for your pull request

54

Make the title as short but as informative as possible.

4. Create a pull request

Add further description about the pull request (optional) and then click on Create pull
request button

Note

If you think more information will help the reviewer navigate through the changes you
have made, use the comment box to add more details. This comments box can interpret
Markdown syntax so you can format your text accordingly.
On the right hand side of the pull request page, you can set a specific reviewer for your
pull request (recommended). Also, given that you are making this pull request, assign
this pull request to you so you are notified of the progress of this pull request.

5. Wait for review

If the project has automated checks included, you will see that these checks will get initiated.

55

If there are no issues with the code, the automated checks should show that all checks have
passed.

56

Note

Wait for reviewer’s feedback/comments. If reviewer request’s changes, make changes to
your code and then commit and push again (as above). If your project has automated
checks, this will get triggered again within the same pull request. Your reviewer will be
notified of the changes you have made and should review your work again. Once reviewer
approves changes, you can then merge your work to the main branch.

57

8 Participating in an existing R/RStudio
project

Following are the general steps to take when participating in an existing R/RStudio project
that has been initiated and led by someone else.

The following diagram illustrates the steps in this process:

A flowchart of a git-based development workflow

8.1 Clone the project to your local machine

Steps in cloning a project to your local machine is described in Chapter 6.

8.2 Create a new branch from the main branch

Before making any changes to the project, create a new branch as follows:

58

8.2.1 Click on New Branch

59

8.2.2 Name the new branch

Name the branch uniquely. The best way to name a branch will be based on how the
team/person you are working with prefers to name branches. Some would like the branch
name to succinctly describe the type of change that is being made. Some may ask you to
name your branch with your username. Some may ask you to name your branch using coded
values.

Once named, click on Create

You will now see the new branch in the list of branches

60

8.3 Code and make changes to your branch

Start coding and implement the changes you want to make or the changes that your collabo-
rator/s asked you to make.

8.4 Commit and push your changes and initiate a pull request

After making changes, you should commit and push your changes. This process is described
in Chapter 7. Your code and your changes do not have to be complete already for your to
commit and push changes. It is good practice to commit and push frequently (at least once
a day usually at the end of your coding session). See this as similar to saving your work at
multiple stages.

61

Once your code and the changes you want to make are complete (and ideally that they are
working correctly on your local machine), and that you are ready to have your work reviewed,
you can now make a pull request. This process is also described in Chapter 7.

8.5 Merge pull request

Once your chosen reviewer has seen your work, they may ask you to make changes based
on what they see with your code. If so, then start coding again on the same branch and
address the reviewers comments, commit those changes and push the changes to your remote
repository. Your changes will push into the same existing open pull request that is waiting
approval. The reviewer can then view your changes and make the necessary feedback.

Once reviewer approves your changes, they may either merge your pull request themselves or
they may let you know in their feedback that they are happy with your changes and that you
can now merge your pull request. If so, then click on the Merge pull request button.

Your changes have now been integrated into the main branch of the project.

62

9 Initiating an R/RStudio project

Following is a diagram of the steps in initiating your own R/RStudio project.

A flowchart for initiating an R project

63

9.1 Create a new project in RStudio

9.1.1 Click on New Project button on RStudio

64

65

9.1.2 Create a New Directory

66

9.1.3 Select New Project as project type

67

9.1.4 Specify details for new project

Specify a project name

Note

Best practices for naming a project are:

• Make sure that name is succinct (as short as possible while at the same time
descriptive of the project);

• Don’t use spaces for your project name. If you need to separate words, use a
hyphen or an underscore;

• Avoid using capital letters.

68

Specify a directory/location

Select a directory in your local machine where to place the directory of your new project

Decide whether to use git to version this project

Here you can decide whether you want to use git to version your project. Remember that
using git doesn’t mean you have to use GitHub. git is software installed in your local machine
and it versions what you have on your local machine. You don’t need GitHub or any other
similar service to version your code with git in your local machine.

I would recommend that you tick this option for any new project you create so that you can
version your work in your local machine even if you don’t want or decide not to use GitHub
or any other remote git service.

Do you want to open a new session

This is by default unticked and will open the new project within the existing RStudio session
(if any). This means that if you have an existing RStudio session with another project that
you are working on, that project will be closed and the new project you are creating will open
in the existing RStudio session.

If you need your existing RStudio session and the project within it to remain open alongside
the new project you are creating, tick this box/option.

Click on Create New Project

Once you click on Create New Project, you will now see the new project open in RStudio.

You will also see something like below within the file explorer pane of RStudio.

69

9.2 2. Structure/organise your new project appropriately

Note

Project organisation is vital because:

• supports productivity because the different components of the project are placed
in directories where they should be;

• enables clarity in communicating project structure;
• facilitates collaboration.

70

Organising an R project can be user- and project-dependent but there are generally accepted
project organising structure that is common to most well-organised projects. Below is an
example:

|-- my-project
|-- data
|-- output

|-- figures
|-- R
|-- my-project.Rproj
|-- analysis_workflow.R
|-- README.md

9.3 3. Start coding

This will include creating bespoke R functions (as required) and creating an Rscript for the
step-by-step processes in your scientific workflow.

9.4 Next steps

The next steps will depend on whether you will use git and GitHub for versioning your project
and whether or not you will work on your project as a solo scientist or work and collaborate
with other scientists.

71

10 Creating portable and reproducible
scientific workflows

At this point, you would have written your own R code and R scripts and saved these within
an R file (.R file extension).

By now, you would have also appreciated how extensible R is through built-in packages and/or
through functions that you have created yourself.

So far, in the examples that we have worked on, the operations and the problems have been
quite straightforward. But from your own experience dealing with your own data, real world
data is far from straightforward and far from simple. Complexity is almost always a given.

R’s scripting capability and R’s extensibility are its main characteristics that make R a
good tool for creating robust scientific workflows particularly for complex data and research
projects.

A typical scientific workflow would have the following steps:

72

73

A flowchart for an example scientific workflow

In general, an R script should reflect the different steps outlined above. Hence, an R script of
a scientific workflow would tend to look like this:

Load libraries

Retrieve and read data

Process data

Analyse data

Descriptive analysis

Statistical tests

Model specifications

Outputs

Tabulation of results

Model outputs

Plots

Report

In this chapter, we will go through a step-by-step walkthrough of how to build a robust scientific
workflow in R. A robust workflow is one that is portable i.e., not dependent on hardware and
software and instead can be run on almost any machine with very minimal, if any, additional
setup or configuration required, and one that is reproducible i.e., can be run over and over
again without issues, providing the expected results with the same data or providing updated
results with new and/or updated data.

74

10.1 Create a new RStudio project

The steps here are a summary of what is found in Section 9.1.

Tip

• Open RStudio

• Click on the File option in the RStudio menu. In the dropdown menu, select New
Project

• In the menu window, select New directory option.

• In the next menu window, select New project option.

• In the next menu window, enter the following details:

– Name of the project - important to make the project name as short as possible
but descriptive of the project you are creating; don’t use spaces, instead use
dash (or underscore) and avoid using capital letters;

– Select the directory in your computer in which you want to save the project
in. Click on Browse to open your computers file manager and navigate to
the directory you want to save your project in;

– Tick the selection box to make this project a git repository (whilst this is not
necessary, this is highly recommended especially if you are collaborating with
others);

– Tick the selection box to enable renv in this project (this is what mainly
contribute to the portability of your project); and,

– Click on Create project

10.2 Create an R file for package dependencies

It is best practice to create a standalone R file specific for invoking/calling on R package
dependencies. I recommend calling this file packages.R and this file should be saved in the
root directory of the project you just created.

These are steps on how you can create this file.

75

Tip

Steps for creating an R package dependencies file:

• Click on the File option in the RStudio menu. In the dropdown menu, select New
File and then in the next dropdown menu, select R script.

• A new tab will open in your text editor pane of RStudio (upper left pane) with the
name Untitled1. Save this file by clicking on the disk icon on the text editor menu
or do a keyboard shortcut with CTRL + s. Give this empty R script the filename
packages.R.

• You should now see a file in the main directory/root directory of your project named
packages.R

• Add code in the packages.R file specifying the packages you will be using in this
project. There will be standard packages that we will always use with this type of
workflow. So a template/generic packages.R file will contain the following:

##
#
#'
#' General packages needed for a targets workflow
#'
#
##

library(targets)
library(tarchetypes)
library(here)
library(rmarkdown)
library(knitr)
library(kableExtra)
library(dplyr)
library(openxlsx)
library(ggplot2)

##
#
#'
#' Add other packages that will be used in the project below
#'

76

#
##

10.3 Create placeholder directories

Create placeholder directories for different components of the workflow.These placeholder direc-
tories will provide an organising structure to the project and remind you of where to save/store
specific files and outputs.

Tip

Following are steps on how to create placeholder directories:

• In the lower right pane of RStudio (the file manager pane), find the menu button
labelled Folder.

• Give this new folder the label of R. This folder will hold all bespoke functions that
we will create to use for this project workflow;

• Repeat these steps to create new folders with the following labels:

– data - This folder will hold any data that we retrieve as part of this workflow.
– outputs - This folder will hold all our workflow outputs such as plots/figures,

tables (in Excel or CSV files), HTML and/or Word and/or PDF outputs
– reports - This folder will hold all our RMarkdown report (.Rmd) files
– docs - This folder will hold any of our deployed outputs such as HTML report,

dashboard, etc.

These are placeholder directories which we will populate as we work through the workflow
for this project.

10.4 Create the target script file

The next task is to create a {targets} script file (_targets.R) which is the file that will
define the workflow that we will be creating.

77

https://books.ropensci.org/targets/

Tip

The _targets.R script file can be created through these steps:

• Clicking on File –> New File –> R Script in RStudio.

• A new tab will show in your Source window on the top left quadrant of your RStudio
screen. This tab will usually be called Untitled1.

• Save this file first and change its name to _targets.R. Make sure to save it in the
current project directory.

• You know that you were successful in doing this once you see a file called
_targets.R in the file system window in the lower right quadrant of your RStudio
screen.

10.5 Edit the targets script file

Now, the next step is to edit your script file by adding sets of R code that does the following:

• Loads the packages required
• Loads custom functions (if any)
• Defines individual targets using tar_targets function
• Ends with a list of targets objects

A basic {targets} workflow will look like this:

Load libraries --
library(targets)

Load custom functions ---
for (f in list.files("R", full.names = TRUE)) source (f)
for (f in list.files(here::here("R"), full.names = TRUE)) source (f)

Create targets and list targets objects -------------------------------------

78

11 Contributing to Oxford IHTM CodeHub
projects

This section would be relevant to you if:

1. You have completed the Open and Reproducible Science in R sub-module of the
MSc for International Health and Tropical Medicine; or,

2. If you are an MSc for International Health and Tropical Medicine alumni and have
experience and knowledge using R.

The Oxford IHTM CodeHub actively runs projects focused on either research software devel-
opment (based in R) or R-based scientific research workflows. Our list of previous and current
projects can be found here.

11.1 Research software development

Oxford IHTM CodeHub develops research software using the R package system. Our collec-
tion of research software tools are found here and the underlying code is available from our
organisational GitHub.

If you would like to contribute to Oxford IHTM CodeHub’s software development, following
is a list of steps on how to.

11.1.1 Get familiar with R’s package writing process

We build our research software tools using R. Hence, we use the R package writing process.
This is described in the official R manual for writing extensions. This manual is the official
reference for what is considered acceptable R software development by the R Core Team and
are the guides that will ensure that your R package can pass submission and entry into the
Comprehensive R Archive Network (CRAN). So, from an academic perspective, you can see
this as the official guide of a publisher/publication on what your manuscript should look like
so you can submit to their journal for publication. It is not a guarantee of publication, but
that you are meeting their publication standards.

79

https://oxford-ihtm.io/projects/
https://oxfordihtm.r-universe.dev
https://github.com/OxfordIHTM
https://cran.r-project.org/

However, the R manual for writing extensions is not as easy to navigate and not as easy to
read. For beginners, we would recommend starting off with Hadley Wickham’s online book
called R Packages. The book is free to use online and has clearly delineated chapters and
sections for specific R package writing tasks required. We would expect anyone wanting to
contribute to the CodeHub’s software development projects to have been able to go through
this book.

11.1.2 Get familiar and reach intermediate level git and GitHub skills

Our software development process uses git and GitHub to facilitate code sharing and versioning.
It is paramount that anyone wanting to contribute to any software project should have at least
intermediate level git and GitHub skills. These include:

• Competent in cloning and/or forking software project repositories;

• Competent in the branching process of git and GitHub;

• Competent in the pull request process of GitHub;

• Competent in GitHub’s issues tracker and project tracker system;

• Competent in code review process of GitHub.

If you want to brush up on your git and GitHub, please go through Jenny Bryan’s Happy Git
and GitHub for the useR.

11.1.3 Review our portfolio of research software

Visit the project page of the Oxford IHTM CodeHub website - https://oxford-ihtm.io/
projects/ to see our current line-up of CodeHub software projects.

Have a look at our R Universe of research software - https://oxfordihtm.r-unviverse.dev - for
the build status of each project.

Have a look at our GitHub organisation - https://github.com/OxfordIHM - to see the code
for each of these projects.

Each project is in continuous development. We recommend looking at the repository for each
of the projects, understand via the README what the project is trying to achieve and then
review each projects issues page to see what the current line up of tasks or issues that the
development requires. If for some reason there is no issues listed in a project, this is most
likely that current developers have not gotten around to documenting their tasks/issues at
hand. If so, you can make an issue to ask developers what the best task is to do for a beginner
to contribute to.

80

https://r-pkgs.org/
https://happygitwithr.com/
https://happygitwithr.com/
https://oxford-ihtm.io/projects/
https://oxford-ihtm.io/projects/
https://oxfordihtm.r-unviverse.dev
https://github.com/OxfordIHM

11.1.4 Communicate with developers

Once you have found a project and an issue that you want to work on, make a comment on
that issue making sure to tag the developer/maintainer stating that you are going to have a
go at this issue and then will make a pull request of your contribution.

This communication is important as this will trigger the developer/maintainer to confirm that
you are an eligible member of the CodeHub (the pre-requisites above) and then will add you
as a collaborator on the project. This step is important because your status in the project as a
collaborator will determine your next step on contributing. We prefer that CodeHub members
are internal collaborators as this simplifies their participation (see next section).

11.1.5 Clone or fork the project repository

Once you have been added to the project repository as a collaborator, you can now clone the
repository to your local machine and then start making your contribution.

If for some reason you haven’t been added to the project repository as a collaborator yet but
you are itching to contribute, you can still start contributing but instead of cloning, you will
need to fork the repository. This is similar to cloning but your fork is identified as being
from someone outside the organisation. This means you will need to make your own GitHub
repository under your own username of the project as a fork of the original, write your code
contribution and commit to your repository and then make a pull request to the original
repository.

These forking steps are described in all the CONTRIBUTING notes/guidance in each project
as we open contributions from anyone (not just CodeHub members) but not all are eligible to
be internal collaborators.

We would like to avoid this for eligible members of CodeHub so will endeavour to keep up
with collaborator requests. So, if you are impatient and would really like to contribute already,
consider forking but be warned that this has a lot more complicated steps than simple cloning.
Either follow-up your request to be made a collaborator.

81

References

Jenny Bryan, and Jim Hester. n.d. Happy Git and GitHub for the useR. Accessed September
3, 2024. https://happygitwithr.com/.

82

https://happygitwithr.com/

	Preface
	Organisation
	1. Tools
	2. Practices
	3. Processes

	How to use

	Introduction
	All about R
	Open and reproducible science

	Tools
	Installing and setting up tools
	Installing R, RStudio, and git
	Windows
	Step 1: Download and install R
	Step 2: Download and install RStudio
	Step 3: Download and install Rtools
	Step 4: Download and install Git for Windows

	macOS
	Step 1: Download and install R
	Install RStudio
	Install git for macOS

	Register a GitHub account
	Step 1. Sign-up to GitHub
	Step 2. Set a GitHub username
	Step 3. Setup two-factor authentication (2FA)
	Step 4. Get added to the Oxford IHTM CodeHub

	Introduction to R and RStudio
	What is R?
	Why use R?
	What is RStudio

	Introduction to git and GitHub
	All about git
	All about GitHub

	Connecting RStudio with GitHub
	Introduce yourself to git
	Create a GitHub personal access token (PAT)
	Step 1: Go to Settings from your GitHub account menu
	Step 2: From Settings navigate to Developer Settings
	Step 3: From Developer Settings navigate to Personal Access Token
	Step 4: Select Tokens (classic)
	Step 5: Click on Generate new token
	Step 6: Select Generate new token (classic)
	Step 7: Give your token a name
	Step 8: Set an expiry date for the token
	Step 9: Set scopes
	Step 10: Click on Generate token
	Step 11: Store your PAT

	Practices
	Writing functions

	Processes
	Cloning a GitHub repository into your local computer using RStudio
	Get the GitHub repository URL
	1. Go to the repository's GitHub page
	2. Copy the repository URL

	Go to RStudio and create new project
	Choose Version Control
	Select Git
	Setup repository settings
	1. Paste the repository URL you copied earlier
	2. Set the project directory name
	3. Set local directory
	4. Create project

	Committing your changes and pushing them to GitHub
	Click on Commit in the Git tab on RStudio
	Getting changes saved and push to GitHub
	1. Stage changes
	2. Add a commit message
	3. Click on the Commit button
	4. Click on the Push button

	Initiate a pull request
	1. Click on the branches link from your repository
	2. Make a pull request
	3. Enter a title for your pull request
	4. Create a pull request
	5. Wait for review

	Participating in an existing R/RStudio project
	Clone the project to your local machine
	Create a new branch from the main branch
	Click on New Branch
	Name the new branch

	Code and make changes to your branch
	Commit and push your changes and initiate a pull request
	Merge pull request

	Initiating an R/RStudio project
	Create a new project in RStudio
	Click on New Project button on RStudio
	Create a New Directory
	Select New Project as project type
	Specify details for new project

	2. Structure/organise your new project appropriately
	3. Start coding
	Next steps

	Creating portable and reproducible scientific workflows
	Create a new RStudio project
	Create an R file for package dependencies
	Create placeholder directories
	Create the target script file
	Edit the targets script file

	Contributing to Oxford IHTM CodeHub projects
	Research software development
	Get familiar with R's package writing process
	Get familiar and reach intermediate level git and GitHub skills
	Review our portfolio of research software
	Communicate with developers
	Clone or fork the project repository

	References

